Skip to main content

A European Perspective on the Transmission of Foodborne Pathogens at the Wildlife–Livestock–Human Interface

  • Chapter
  • First Online:
Food Safety Risks from Wildlife

Part of the book series: Food Microbiology and Food Safety ((RESDEV))

Abstract

There are many unique aspects and peculiarities regarding the transmission of foodborne pathogens at the wildlife–livestock–human interface in Europe, which include the diversity of farming systems, wildlife and habitats, as well as the consumption habits of the European human population. However, it can be generalized that zoonotic diseases acquired from wildlife (or directly related to wildlife) are mainly linked to the consumption of undercooked venison, hunting or handling infected game carcasses. Hunting has always been an integral part of the cultures and traditions of European rural societies, with an estimated greater than seven million hunters practicing this activity for recreational, social, and/or consumptive purposes (Brainerd, http://fp7hunt.net/Portals/HUNT/Hunting_Charter.pdf, 2007). Recently, there has been a growing consumer demand for hunted meat and cured, fermented, and dried game products, which have become more popular and accessible in the European market (Cenci-Goga et al., Meat Sci 90:599–606, 2012; Obwegeser et al., Vet Micro 159:149–154, 2012). Schulp et al. (Ecol Econ 105:292–305, 2014) report that 38 of the 97 European game species, including birds and mammals, are consumed, with the red deer (Cervus elaphus), the roe deer (Capreolus capreolus), the European hare (Lepus europaeus), the common pheasant (Phasianus colchicus), and the wild boar (Sus scrofa) being the main game food species, since they are hunted in all countries and have the largest harvest numbers. Considerable research has been conducted on foodborne pathogens in the most common wild ungulate species in several European countries; however, relatively little information is available on hares and other lagomorphs, as well as wild game birds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AGES (Austrian Agency for Health and Food Safety) (2012) Report on zoonoses and zoonotic agents in Austria, 2012. http://www.ages.at/uploads/media/Report_on_Zoonoses_and_zoonotic_Agents_in_Austria__2012.pdf

  • Alvarez-Fernandez E, Dominguez-Rodriguez J, Capita R, Alonso-Calleja C (2012) Influence of housing systems on microbial load and antimicrobial resistance patterns of Escherichia coli isolates from eggs produced for human consumption. J Food Protect 75:847–853

    Article  Google Scholar 

  • Antilles N, Sanglas A, Cerdà-Cuéllar M (2015) Free-living waterfowl as a source of zoonotic bacteria in a dense wild bird population area in Northeastern Spain. Transbound Emerg Dis 62:516–521 doi:10.1111/tbed.12169

    Google Scholar 

  • Apollonio M, Andersen R, Putman R (2010) European ungulates and their management in the 21st century. Cambridge University Press, New York, NY

    Google Scholar 

  • Asbakk K, Gall D, Stuen S (1999) A screening ELISA for brucellosis in reindeer. Zentralbl Veterinarmed B 46:649–657

    CAS  PubMed  Google Scholar 

  • Aschfalk A, Kemper N, Holler C (2003) Bacteria of pathogenic importance in faeces from cadavers of free-ranging or corralled semi-domesticated reindeer in northern Norway. Vet Res Commun 27:93–100

    Article  CAS  PubMed  Google Scholar 

  • Astorga Márquez RJ, Carvajal A, Maldonado A et al (2014) Influence of cohabitation between domestic goat (Capra aegagrus hircus) and Iberian ibex (Capra pyrenaica hispanica) on seroprevalence of infectious diseases. Eur J Wildl Res 60:387–390

    Article  Google Scholar 

  • Atanassova V, Ring C (1999) Prevalence of Campylobacter spp. in poultry and poultry meat in Germany. Int J Food Microbiol 51:187–190

    Article  CAS  PubMed  Google Scholar 

  • Atanassova V, Apelt J, Reich F, Klein G (2008) Microbiological quality of freshly shot game in Germany. Meat Sci 78:414–419

    Article  CAS  PubMed  Google Scholar 

  • Avagnina A, Nucera D, Grassi MA et al (2012) The microbiological conditions of carcasses from large game animals in Italy. Meat Sci 91:266–271

    Article  CAS  PubMed  Google Scholar 

  • Ayral F, Artois J, Zilber AL et al (2015) The relationship between socioeconomic indices and potentially zoonotic pathogens carried by wild Norway rats: a survey in Rhône, France (2010–2012). Epidemiol Infect 143:586–599

    Google Scholar 

  • Bardiau M, Gregoire F, Muylaert A et al (2010) Enteropathogenic (EPEC), enterohaemorragic (EHEC) and verotoxigenic (VTEC) Escherichia coli in wild cervids. J Appl Microbiol 109:2214–2222

    Article  CAS  PubMed  Google Scholar 

  • Baylis CL, MacPhee S, Martin KW et al (2000) Comparison of three enrichment media for the isolation of Campylobacter spp. from foods. J Appl Microbiol 89:884–891

    Article  CAS  PubMed  Google Scholar 

  • Beral M, Rossi S, Aubert D et al (2012) Environmental factors associated with the seroprevalence of Toxoplasma gondii in wild boars (Sus scrofa), France. Ecohealth 9:303–309

    Article  PubMed  Google Scholar 

  • Berge AC, Hancock DD, Sischo WM, Besser TE (2010) Geographic, farm, and animal factors associated with multiple antimicrobial resistance in fecal Escherichia coli isolates from cattle in the western United States. J Am Vet Med A 12:1338–1344

    Article  Google Scholar 

  • Bezos J, Alvarez J, Romero B et al (2014) Bovine tuberculosis: historical perspective. Res Vet Sci Suppl S3–4

    Google Scholar 

  • Blake DP, Humphry RW, Scott KP et al (2003) Influence of tetracycline exposure on tetracycline resistance and the carriage of tetracycline resistance genes within commensal Escherichia coli populations. J Appl Microbiol 94:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Boadella M, Casas M, Martín M et al (2010) Increasing contact with hepatitis E virus in red deer, Spain. Emerg Infect Dis 16:1994–1996

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 2:95–102

    Article  Google Scholar 

  • Braeye T, de Schrijver K, Wollants E et al (2014) A large community outbreak of gastroenteritis associated with consumption of drinking water contaminated by river water, Belgium, 2010. Epidemiol Infect 143:711–719

    Article  PubMed  PubMed Central  Google Scholar 

  • Brainerd S (2007) European Charter on hunting and biodiversity. Convention on the conservation of European wildlife and natural habitats. http://fp7hunt.net/Portals/HUNT/Hunting_Charter.pdf

  • Breyer I, Georgieva D, Kurdova R et al (2004) Echinococcus granulosus strain typing in Bulgaria: the G1 genotype is predominant in intermediate and definitive wild hosts. Parasitol Res 93:127–130

    Article  PubMed  Google Scholar 

  • Cahill S, Llimona F, Cabañeros L, Calomardo F (2012) Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim Biodivers Conserv 35:221–233

    Google Scholar 

  • Caprioli A, Donelli G, Falbo V et al (1991) Antimicrobial resistance and production of toxins in Escherichia coli strains from wild ruminants and the Alpine Marmot. J Wildl Dis 27:324–327

    Article  CAS  PubMed  Google Scholar 

  • Carbonero A, Paniagua J, Torralbo A et al (2014) Campylobacter infection in wild artiodactyl species from southern Spain: occurrence, risk factors and antimicrobial susceptibility. Comp Immunol Microbiol Infect Dis 37:115–121

    Article  CAS  PubMed  Google Scholar 

  • Carmena D, Cardona GA (2014) Echinococcosis in wild carnivorous species: epidemiology, genotypic diversity, and implications for veterinary public health. Vet Parasitol 202:69–94

    Article  PubMed  Google Scholar 

  • Cenci-Goga BT, Rossitto PV, Sechi P et al (2012) Effect of selected dairy starter cultures on microbiological, chemical and sensory characteristics of swine and venison (Dama dama) nitrite-free dry-cured sausages. Meat Sci 90:599–606

    Article  CAS  PubMed  Google Scholar 

  • Coelho C, Vieira-Pinto M, Faria AS et al (2014) Serological evidence of Toxoplasma gondii in hunted wild boar from Portugal. Vet Parasitol 202:310–312

    Article  PubMed  Google Scholar 

  • Chiari M, Zanoni M, Tagliabue S et al (2013) Salmonella serotypes in wild boars (Sus scrofa) hunted in northern Italy. Acta Vet Scand 55:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobbold RN, Hancock DD, Rice DH et al (2007) Rectoanal junction colonization of feedlot cattle by Escherichia coli O157: H7 and its association with supershedders and excretion dynamics. Appl Environ Microbiol 73:1563–1568

    Article  CAS  PubMed  Google Scholar 

  • Colles FM, Dingle KE, Cody AJ, Maiden MCJ (2008) Comparison of Campylobacter populations in wild geese with those in starlings and free-range poultry on the same farm. Appl Environ Microbiol 74:3583–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Deus N, Peralta B, Pina S et al (2008) Epidemiological study of hepatitis E virus infection in European wild boars (Sus scrofa) in Spain. Vet Microbiol 129:163–170

    Article  PubMed  Google Scholar 

  • De Jong H, Ekdahl M (1965) Salmonellosis in calves—the effect of dose rate and other factors on transmission. N Z Vet J 13:59–64

    Article  PubMed  Google Scholar 

  • Deplazes P, van Knapen F, Schweiger A et al (2011) Role of pet dogs and cats in the transmission of helminthic zoonoses in Europe, with a focus on echinococcosis and toxocarosis. Vet Parasitol 182:41–53

    Article  PubMed  Google Scholar 

  • Devleesschauwer B, Praet N, Speybroeck N et al (2015) The low global burden of trichinellosis: evidence and implications. Int J Parasitol 45:95–99

    Article  PubMed  Google Scholar 

  • Díaz-Sánchez S, Sánchez S, Sánchez M et al (2012a) Detection and characterization of Shiga toxin-producing Escherichia coli in game meat and ready-to-eat meat products. Int J Food Microbiol 160:179–182

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Sánchez S, Moriones AM, Casas F et al (2012b) Prevalence of Escherichia coli, Salmonella spp and Campylobacter spp in the intestinal flora of farm-reared, restocked and wild red-legged partridges (Alectoris rufa): is restocking using farm-reared birds a risk? Eur J Wildl Res 58:99–105

    Article  Google Scholar 

  • Díaz‐Sánchez S, Sánchez S, Herrera‐Leon S et al (2013) Prevalence of Shiga toxin‐producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: relationship with management practices and livestock influence. Vet Microbiol 163:274–281

    Article  PubMed  Google Scholar 

  • Dipineto L, Russo TP, Gargiulo A et al (2014) Prevalence of enteropathogenic bacteria in common quail (Coturnix coturnix). Avian Pathol 23:1–10

    Google Scholar 

  • Dubey JP, Beattie CP (1988) Toxoplasmosis of animals and man. CRC Press, Boca Raton, FL

    Google Scholar 

  • ECDC (European Centre for Disease Prevention and Control) (2010) Annual epidemiological report on communicable diseases in Europe 2010. ECDC, Stockholm, p 2010

    Google Scholar 

  • ECDC (European Centre for Disease Prevention and Control) (2013) Reporting on 2011 surveillance data and 2012 epidemic intelligence data. Annual epidemiological report. ECDC, Stockholm, p 2013

    Google Scholar 

  • EFSA (European Food Safety Authority) (2009) Technical specifications for the monitoring and reporting of verotoxigenic Escherichia coli (VTEC) on animals and food (VTEC surveys on animals and food). EFSA J 7:1366

    Article  Google Scholar 

  • EFSA (European Food Safety Authority) (2013) Assessment of Echinococcus multilocularis surveillance reports submitted 2013 in the context of Commission Regulation (EU) No 1152/2011. EFSA J 11:3465

    Google Scholar 

  • EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2013a) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J 11:3129

    Article  Google Scholar 

  • EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2013b) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011. EFSA J 11:3196

    Article  Google Scholar 

  • EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2014) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA J 12:3547

    Article  Google Scholar 

  • Ejidokun OO, Walsh A, Barnett J et al (2006) Human vero cytotoxigenic Escherichia coli (VTEC) O157 infection linked to birds. Epidemiol Infect 134:421–423

    Article  CAS  PubMed  Google Scholar 

  • Epps SV, Harvey RB, Hume ME et al (2013) Foodborne Campylobacter: infections, metabolism, pathogenesis and reservoirs. Int J Environ Res Public Health 10:6292–6304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • European Commission (2007) 2007/516/EC: commission decision of 19 July 2007concerning a financial contribution from the community towards a survey on the prevalence and antimicrobial resistance of Campylobacter spp. in broiler flocks and on the prevalence of Campylobacter spp. and Salmonella spp. in broiler carcasses to be carried out in the Member States. Off J Eur Union 50:L190

    Google Scholar 

  • Fedorka‐Cray P, Kelley L, Stabel T et al (1995) Alternate routes of invasion may affect pathogenesis of Salmonella Typhimurium in swine. Infect Immun 63:2658–2664

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Aguilar X, Ajzenberg D, Cabezón O, Martínez-López A, Darwich L, Dubey JP, Almería S (2013) Fatal toxoplasmosis associated with an atypical Toxoplasma gondii strain in a Bennett’s wallaby (Macropus rufogriseus) in Spain. Vet Parasitol 196:523–527

    Article  PubMed  Google Scholar 

  • Ferroglio E, Bosio F, Trisciuoglio A, Zanet S (2014) Toxoplasma gondii in sympatric wild herbivores and carnivores: epidemiology of infection in the Western Alps. Parasit Vector 7:196

    Article  Google Scholar 

  • Freidl G, Stalder G, Kostic T et al (2011) Verocytotoxin-producing Escherichia coli in Chamois (Rupicapra rupicapra) and cattle in Austria. J Wildl Dis 47:704–708

    Article  PubMed  Google Scholar 

  • Fitzgerald C, Whichard J, Nachamkin I (2008) Diagnosis and antimicrobial susceptibility of Campylobacter species. In: Nachamkin I, Szymanski CM, Blaser MJ (eds) Campylobacter, 3rd edn. ASM Press, Washington, DC, pp 227–243

    Google Scholar 

  • Gaffuri A, Holmes JP (2012) Salmonella infections. In: Gavier-Widen D, Meredith A, Duff JP (eds) Infectious diseases of wild mammals and birds in Europe, 1st edn. Wiley-Blackwell, Chichester, pp 386–397

    Chapter  Google Scholar 

  • Galińska EM, Zagórski J (2013) Brucellosis in humans – etiology, diagnostics, clinical forms. Ann Agric Environ Med 20:233–238

    PubMed  Google Scholar 

  • García-Sánchez A, Sánchez S, Rubio R et al (2007) Presence of Shiga-toxin producing E. coli O157:H7 in a survey of wild artyodactils. Vet Microbiol 121:377

    Article  CAS  Google Scholar 

  • Gauss CBL, Dubey JP, Vidal D et al (2005) Seroprevalence of Toxoplasma gondii in wild pigs (Sus scrofa) from Spain. Vet Parasitol 131:151–156

    Article  CAS  PubMed  Google Scholar 

  • Glawischnig W, Khaschabi D, Schopf K, Schonbauer M (2000) An outbreak of Salmonella Dublin in chamois (Rupicapra rupicapra). Wien Tierarztl Monatsschr 87:21–25

    Google Scholar 

  • Godfrey ER, Randolph SE (2011) Economic downturn results in tick-borne disease upsurge. Parasit Vector 4:35

    Article  Google Scholar 

  • Godfroid J, Garin-Bastuji B, Saegerman C, Blasco JM (2013) Brucellosis in terrestrial wildlife. Rev Sci Tech OIE 32:27–42

    Article  CAS  Google Scholar 

  • Gómez P, González-Barrio D, Benito D et al (2014) Detection of methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene in wild small mammals in Spain. J Antimicrob Chemother 69:2061–2064

    Article  PubMed  CAS  Google Scholar 

  • González-Barrio D, Almería S, Caro MR et al (2013) Coxiella burnetii shedding by farmed red deer (Cervus elaphus). Transbound Emerg Dis. doi:10.1111/tbed.12179

    Google Scholar 

  • González-Barrio D, Maio E, Vieira-Pinto M et al (2015) European rabbits as reservoir for Coxiella burnetii. Emerg Infect Dis 21:1055–1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gortázar C, Acevedo P, Ruiz-Fons F, Vicente J (2006) Disease risks and overabundance of game species. Eur J Wildl Res 52:81–87

    Article  Google Scholar 

  • Gortázar C, Ferroglio E, Höfle U et al (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53:241–256

    Article  Google Scholar 

  • Gortázar C, Reperant LA, Kuiken T et al (2014) Crossing the interspecies barrier: opening the door to zoonotic pathogens. PLoS Pathogens 10, e1004129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griekspoor P, Colles FM, McCarthy ND et al (2013) Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. Mol Ecol 22:1463–1472

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerra B, Fischer J, Helmuth R (2014) An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol 171:290–297

    Article  PubMed  Google Scholar 

  • Gummow B (2010) Challenges posed by new and re-emerging infectious diseases in livestock production, wildlife and humans. Livest Sci 130:41–46

    Article  Google Scholar 

  • Guzmán-Verri C, González-Barrientos R, Hernández-Mora G et al (2012) Brucella ceti and brucellosis in cetaceans. Front Cell Infect Microbiol 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Gyuranecz M, Rigó K, Dán A et al (2011) Investigation of the ecology of Francisella tularensis during an inter-epizootic period. Vector Borne Zoonotic Dis 11:8

    Article  Google Scholar 

  • Gyuranecz M (2012) Tularaemia. In: Gavier-Widen D, Meredith A, Duff JP (eds) Infectious diseases of wild mammals and birds in Europe, 1st edn. Wiley-Blackwell, Chichester, pp 303–309

    Chapter  Google Scholar 

  • Hälli O, Ala-Kurikka E, Nokireki T et al (2012) Prevalence of and risk factors associated with viral and bacterial pathogens in farmed European wild boar. Vet J 194:98–101

    Article  PubMed  Google Scholar 

  • Haydon DT, Cleaveland S, Taylor LH, Laurenson MK (2002) Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis 8:1468–1473

    Article  PubMed  Google Scholar 

  • Hernández-Mora G, Palacios-Alfaro JD, González-Barrientes R (2013) Wildlife reservoirs of brucellosis: Brucella in aquatic environments. Rev Sci Tech OIE 32:89–103

    Article  Google Scholar 

  • Heuer OE, Pedersen K, Andersen JS, Madsen M (2002) Vancomycin-resistant enterococci (VRE) in broiler flocks 5 years after the avoparcin ban. Microb Drug Resist 8:133–138

    Article  CAS  PubMed  Google Scholar 

  • Hilbert F, Smulders FJM, Chopra‐Dewasthaly R, Paulsen P (2012) Salmonella in the wildlife‐human interface. Food Res Int 45:603–608

    Article  Google Scholar 

  • Hirvelä-Koski V, Haukisalmi V, Kilpelä SS et al (2003) Echinococcus granulosus in Finland. Vet Parasitol 111:175–192

    Article  PubMed  Google Scholar 

  • Hofer E, Cernela N, Stephan R (2012) Shiga toxin subtypes associated with Shiga toxin‐producing Escherichia coli strains isolated from red deer, roe deer, chamois, and ibex. Foodborne Pathog Dis 9:792–795

    Article  CAS  PubMed  Google Scholar 

  • Hoffman LC, Wiklund E (2006) Game and venison – meat for the modern consumer. Meat Sci 74:197–208

    Article  CAS  PubMed  Google Scholar 

  • Horigan V, Davies RH, Kelly LA et al (2014) A qualitative risk assessment of the microbiological risks to consumers from the production and consumption of uneviscerated and eviscerated small game birds in the UK. Food Control 45:127–137

    Article  Google Scholar 

  • Humphrey T, O'Brien S, Madsen M (2007) Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117:237–257

    Article  PubMed  Google Scholar 

  • Jirintai S, Tanggis M, Suparyatmo JB et al (2014) Rat hepatitis E virus derived from wild rats (Rattus rattus) propagates efficiently in human hepatoma cell lines. Virus Res 185:92–102

    Article  CAS  PubMed  Google Scholar 

  • Kemper N, Aschfalk A, Holler C (2006) Campylobacter spp., Enterococcus spp., Escherichia coli, Salmonella spp., Yersinia spp., and Cryptosporidium oocysts in semi-domesticated reindeer (Rangifer tarandus tarandus) in Northern Finland and Norway. Acta Vet Scand 48:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YM, Jeong S, Kim JY et al (2011) The first case of genotype 4 hepatitis E related to wild boar in South Korea. J Clin Virol 50:253–256

    Article  PubMed  Google Scholar 

  • Kosmider R, Paterson A, Voas A et al (2013) Echinococcus multilocularis introduction and establishment in wildlife via imported beavers. Vet Rec 172:606

    Article  CAS  PubMed  Google Scholar 

  • Kozak GK, Boerlin P, Janecko N et al (2009) Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl Environ Microbiol 75:559–566

    Article  CAS  PubMed  Google Scholar 

  • Krumbholz A, Joel S, Dremsek P et al (2014) Seroprevalence of hepatitis E virus (HEV) in humans living in high pig density areas of Germany. Med Microbiol Immunol 203:273–282

    Article  CAS  PubMed  Google Scholar 

  • Lahuerta A, Westrell T, Takkinen J et al (2011) Zoonoses in the European Union: Origin, distribution and dynamics – the EFSA-ECDC summary report 2009. Euro Surveill 16:13

    Google Scholar 

  • Larska M, Krzysiak MK, Jabłonski A et al (2015) Hepatitis E virus antibody prevalence in wildlife in Poland. Zoonoses Public Health 62:105–110

    Article  CAS  PubMed  Google Scholar 

  • Learmount J, Zimmer IA, Conyers C et al (2012) A diagnostic study of Echinococcus multilocularis in red foxes (Vulpes vulpes) from Great Britain. Vet Parasitol 190:447–453

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chijiwa K, Sera N et al (2005) Hepatitis E virus transmission from wild boar meat. Emerg Infect Dis 11:1958–1960

    Article  PubMed  PubMed Central  Google Scholar 

  • Lillehaug A, Bergsjo B, Schau J et al (2005) Campylobacter spp., Salmonella spp., verocytotoxic Escherichia coli, and antibiotic resistance in indicator organisms in wild cervids. Acta Vet Scand 46:23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linke K, Ruckerl I, Brugger K et al (2014) Reservoirs of Listeria species in three environmental ecosystems. Appl Environ Microbiol 80:5583–5592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Literak I, Dolejska M, Rybarikova J et al (2009) Highly variable patterns of antimicrobial resistance in commensal Escherichia coli isolates from pigs, sympatric rodents, and flies. Microb Drug Resist 15:229–237

    Article  CAS  PubMed  Google Scholar 

  • Literak I, Dolejska M, Radimersky T et al (2010) Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. J Appl Microbiol 108:702–1711

    Article  CAS  Google Scholar 

  • Loncaric I, Kübber-Heiss A, Posautz A et al (2014) MecC- and mecA-positive methicillin-resistant Staphylococcus aureus (MRSA) isolated from livestock sharing habitat with wildlife previously tested positive for mecC-positive MRSA. Vet Dermatol 25:146–148

    Article  Google Scholar 

  • Luque-Larena JJ, Mougeot F, Viñuela J et al (2013) Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl Ecol 14:432–441

    Article  Google Scholar 

  • Lyautey E, Hartmann A, Pagotto F et al (2007) Characteristics and frequency of detection of fecal Listeria monocytogenes shed by livestock, wildlife, and humans. Can J Microbiol 53:1158–1167

    Article  CAS  PubMed  Google Scholar 

  • Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol 8:669–685

    Article  CAS  Google Scholar 

  • Martin C, Pastoret P, Brochier B et al (2011) A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Vet Res 42:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín-Hernando MP, González LM, Ruiz-Fons F et al (2008) Massive presence of Echinococcus granulosus (Cestoda, Taeniidae) cysts in a wild boar (Sus scrofa) from Spain. Parasitol Res 103:705–707

    Article  PubMed  Google Scholar 

  • Martínez R, García A, Blanco JE (2011) Occurrence of verocytotoxin-producing Escherichia coli in the faeces of free-ranging lagomorphs in southwest Spain. Eur J Wildl Res 57:187–189

    Article  Google Scholar 

  • Martínez-López B, Barasona JA, Gortázar C et al (2014) Farm-level risk factors for the occurrence, new infection or persistence of tuberculosis in cattle herds from South-Central Spain. Prev Vet Med 116:268–278

    Article  PubMed  Google Scholar 

  • Massei G, Roy S, Bunting R (2011) Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Hum Wildl Interact 5:79–99

    Google Scholar 

  • Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12:518–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medlock JM, Leach S (2009) Echinococcus multilocularis and possible cycles in UK wildlife. Vet Rec 164:789–790

    Article  PubMed  Google Scholar 

  • Membré J, Laroche M, Magras C (2011) Assessment of levels of bacterial contamination of large wild game meat in Europe. Food Microbiol 28:1072–1079

    Article  PubMed  Google Scholar 

  • Mentaberre G, Porrero MC, Navarro‐Gonzalez N et al (2013) Cattle drive Salmonella infection in the wildlife‐livestock interface. Zoonoses Public Health 60:510–518

    Article  CAS  PubMed  Google Scholar 

  • Methner U, Heller M, Bocklisch H (2010) Salmonella enterica subspecies enterica serovar Choleraesuis in a wild boar population in Germany. Eur J Wildl Res 56:493–502

    Article  Google Scholar 

  • Mick V, Le Carrou G, Corde Y et al (2014) Brucella melitensis in France: persistence in wildlife and probable spillover from Alpine Ibex to domestic animals. PLoS One 9, e94168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miko A, Pries K, Haby S et al (2009) Assessment of Shiga-Toxin producing Escherichia coli isolates from wildlife meat as potential pathogens for humans. Appl Environ Microbiol 75:6462–6470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokracka J, Koczura R, Kaznowski A (2012) Transferable integrons of Gram-negative bacteria isolated from the gut of a wild boar in the buffer zone of a national park. Ann Microbiol 62:877–880

    Article  CAS  PubMed  Google Scholar 

  • Mora A, Lopez C, Dhabi G et al (2012) Seropathotypes, phylogroups, Stx subtypes, and intimin types of wildlife-carried, Shiga toxin-producing Escherichia coli strains with the same characteristics as human-pathogenic isolates. Appl Environ Microbiol 78:2578–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz PM, Boadella M, Arnal M et al (2010) Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates. BMC Infect Dis 10:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Mendoza M, Marreros N, Boadella M et al (2013) Wild boar tuberculosis in Iberian Atlantic Spain: a different picture from Mediterranean habitats. BMC Vet Res 9:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Murrell KD, Pozio E (2011) Worldwide occurrence and impact of human trichinellosis, 1986–2009. Emerg Infect Dis 17:2194–2202

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustin K, Newey S, Knott J et al (2011) Biodiversity impacts of game bird hunting and associated management practices in Europe and North America. RSPB report. http://www.hutton.ac.uk/sites/default/files/files/RSPB_ReportFINAL_Covers.pdf. Accessed 22 Nov 2014

  • Nebola M, Borilova G, Steinhauserova I (2007) Campylobacter subtypes in pheasants (Phasianus colchicus spp. torquatus) in the Czech Republic. Vet Med (Praha) 52:496–501

    Google Scholar 

  • Nardini R, Verin R, Mazzei M et al (2014) Hepatitis E virus-related liver alterations and viral antigen localization in European wild boar (Sus scrofa). Eur J Wildl Res 60:835–838

    Article  Google Scholar 

  • Navarro-Gonzalez N, Mentaberre G, Porrero MC et al (2012) Effect of cattle on Salmonella carriage, diversity and antimicrobial resistance in free-ranging wild boar (Sus scrofa) in northeastern Spain. PLoS One 7, e51614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Gonzalez N, Porrero MC, Mentaberre G et al (2013a) Antimicrobial resistance in indicator Escherichia coli from free-ranging livestock and sympatric wild ungulates in a natural environment (NE Spain). Appl Environ Microbiol 79:6184–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Gonzalez N, Casas-Diaz E, Porrero MC et al (2013b) Food-borne zoonotic pathogens and antimicrobial resistance of indicator bacteria in urban wild boars (Sus scrofa) in Barcelona, Spain. Vet Microbiol 167:686–689

    Article  PubMed  Google Scholar 

  • Navarro-Gonzalez N, Velarde R, Porrero MC et al (2014a) Lack of evidence of spill-over of Salmonella enterica between cattle and sympatric Iberian ibex (Capra pyrenaica) from a protected area in Catalonia, NE Spain. Transbound Emerg Dis 61:378–384

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Gonzalez N, Ugarte-Ruiz M, Porrero MC et al (2014b) Campylobacter shared between free-ranging cattle and sympatric wild ungulates in a natural environment (NE Spain). Ecohealth 11:333–342

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Gonzalez N, Porrero MC, Mentaberre G et al (2015) Escherichia coli O157:H7 in wild boars (Sus scrofa) and Iberian ibex (Capra pyrenaica) sharing pastures with free-ranging livestock in a natural environment in Spain. Vet Quart 25:1–5

    Google Scholar 

  • Nielsen EM, Skov MN, Madsen JJ et al (2004) Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms. Appl Environ Microbiol 70:6944–6947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obwegeser T, Stephan R, Hofer E, Zweifel C (2012) Shedding of foodborne pathogens and microbial carcass contamination in hunted wild ruminants. Vet Microbiol 159:149–154

    Article  PubMed  Google Scholar 

  • Onac D, Gyorke A, Oltean M et al (2013) First detection of Echinococcus granulosus G1 and G7 in wild boars (Sus scrofa) and red deer (Cervus elaphus) in Romania using PCR and PCR-RFLP techniques. Vet Parasitol 193:289–291

    Article  CAS  PubMed  Google Scholar 

  • Otero-Abad B, Torgerson PR (2013) A systematic review of the epidemiology of echinococcosis in domestic and wild animals. PLoS Negl Trop Dis 7, e2249

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulsen P, Hilbert F, Winkelmayer R et al (2003) Zur tierarztlichen Fleischuntersuchung von Wild, dargestellt an der Untersuchung von Rehen in Wildfleischbearbeitungsbetrieben (Veterinary meat inspection of wildlife, examinations of roe deer in a cutting plant.). Arch Lebensmitt Hyg 54:137–140

    Google Scholar 

  • Paulsen P, Smulders FJM, Hilbert F (2012) Salmonella in meat from hunted game: a Central European perspective. Food Res Int 45:609–616

    Article  Google Scholar 

  • Pannwitz G, Mayer-Scholl A, Balicka-Ramisz A, Nöckler K (2010) Increased prevalence of Trichinella spp., Northeastern Germany, 2008. Emerg Infect Dis 16:936–942

    Article  PubMed  PubMed Central  Google Scholar 

  • Paştiu AI, Györke A, Blaga R et al (2013) In Romania, exposure to Toxoplasma gondii occurs twice as often in swine raised for familial consumption as in hunted wild boar, but occurs rarely, if ever, among fattening pigs raised in confinement. Parasitol Res 112:2403–2407

    Article  PubMed  Google Scholar 

  • Pérez-Lago L, Navarro Y, García-de-Viedma D (2014) Current knowledge and pending challenges in zoonosis caused by Mycobacterium bovis: a review. Res Vet Sci 97:S94–S100

    Article  PubMed  Google Scholar 

  • Pierard D, Van Damme L, Moriau L et al (1997) Virulence factors of verocytotoxin-producing Escherichia coli isolated from raw meat. Appl Environ Microbiol 63:4585–4587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piñero A, Ruiz-Fons F, Hurtado A et al (2014) Changes in the dynamics of Coxiella burnetii infection in dairy cattle: an approach to match field data with the epidemiological cycle of C. burnetii in endemic herds. J Dairy Sci 97:2718–2730

    Article  PubMed  CAS  Google Scholar 

  • Pioz M, Loison A, Gibert P et al (2008) Antibodies against Salmonella is associated with reduced reproductive success in female alpine chamois (Rupicapra rupicapra). Can J Zool 86:1111–1120

    Article  CAS  Google Scholar 

  • Pitkanen T (2013) Review of Campylobacter spp. in drinking and environmental waters. J Microbiol Methods 95:39–47

    Article  CAS  PubMed  Google Scholar 

  • Poeta P, Radhouani H, Pinto L et al (2009) Wild boars as reservoirs of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli of different phylogenetic groups. J Basic Microbiol 49:584–588

    Article  CAS  PubMed  Google Scholar 

  • Porrero C, Mentaberre G, Sánchez S et al (2013) Methicillin resistant Staphylococcus aureus (MRSA) carriage in different free-living wild animal species in Spain. Vet J 198:127–130

    Article  CAS  PubMed  Google Scholar 

  • Pozio E (2005) The broad spectrum of Trichinella hosts: from cold- to warm blooded animals. Vet Parasitol 132:3–11

    Article  CAS  PubMed  Google Scholar 

  • Pozio E, Zarlenga DS (2013) New pieces of the Trichinella puzzle. Int J Parasitol 43:983–997

    Article  PubMed  Google Scholar 

  • Pritchard GC, Williamson S, Carson T et al (2001) Wild rabbits – a novel vector for verocytotoxigenic Escherichia coli O157. Vet Rec 149:567

    CAS  PubMed  Google Scholar 

  • Ramanzin M, Amici A, Casoli C et al (2010) Meat from wild ungulates: ensuring quality and hygiene of an increasing resource. Ital J Anim Sci 9, e61

    Google Scholar 

  • Richomme C, Boadella M, Courcoul A et al (2013) Exposure of wild boar to Mycobacterium tuberculosis complex in France since 2000 is consistent with the distribution of bovine tuberculosis outbreaks in cattle. PLoS One 8, e77842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robino P, Tomassone L, Tramuta C et al (2010) Prevalence of Campylobacter jejuni, Campylobacter coli and enteric Helicobacter in domestic and free living birds in North-Western Italy. Schweiz Arch Tierheilkd 152:425–431

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez S, Bezos J, Romero B et al (2011) Mycobacterium caprae infection in livestock and wildlife, Spain. Emerg Infect Dis 17:532–535

    Article  PubMed  PubMed Central  Google Scholar 

  • Romig T, Dinkel A, Mackenstedt U (2006) The present situation of echinococcosis in Europe. Parasitol Int 55:S187–S191

    Article  PubMed  Google Scholar 

  • Ruiz-Fons F, Astobiza I, Barandika JF (2010) Seroepidemiological study of Q fever in domestic ruminants in semi-extensive grazing systems. BMC Vet Res 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Fons F (2012) Coxiella burnetii infection. In: Gavier-Widen D, Meredith A, Duff JP (eds) Infectious diseases of wild mammals and birds in Europe, 1st edn. Wiley-Blackwell, Chichester, pp 409–412

    Chapter  Google Scholar 

  • Ruiz-Fons F (2015) A review of the current status of relevant zoonotic pathogens in wild swine (Sus scrofa) populations: changes modulating the risk of transmission to humans. Transbound Emerg Dis (in press) doi: 10.1111/tbed.12369

    Google Scholar 

  • Rybarikova J, Dolejska M, Materna D et al (2010) Phenotypic and genotypic characteristics of antimicrobial resistant Escherichia coli isolated from symbovine flies, cattle and sympatric insectivorous house martins from a farm in the Czech Republic (2006–2007). Res Vet Sci 89:179–183

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Koike F, Momose H et al (2012) Forecasting the range expansion of a recolonising wild boar Sus scrofa population. Wildl Biol 18:383–392

    Article  Google Scholar 

  • Sánchez S, García-Sánchez A, Martínez R et al (2009) Detection and characterization of Shiga toxin-producing Escherichia coli other than Escherichia coli O157:H7 in wild ruminants. Vet J 180:384–388

    Article  PubMed  CAS  Google Scholar 

  • Sánchez S, Martínez R, García A et al (2010) Detection and characterisation of O157:H7 and non-O157 Shiga toxin-producing Escherichia coli in wild boars. Vet Microbiol 143:420–423

    Article  PubMed  CAS  Google Scholar 

  • Scaife HR, Cowan D, Finney J et al (2006) Wild rabbits (Oryctolagus cuniculus) as potential carriers of verocytotoxin-producing Escherichia coli. Vet Rec 159:175–178

    Article  CAS  PubMed  Google Scholar 

  • Schönberg-Norio D, Johanna Takkinen J, Hänninen ML et al (2004) Swimming and Campylobacter Infections. Emerg Infect Dis 10:1471–1477

    Article  Google Scholar 

  • Schulp CJE, Thuiller W, Verburg PH (2014) Wild food in Europe: a synthesis of knowledge and data of terrestrial wild food as an ecosystem service. Ecol Econ 105:292–305

    Article  Google Scholar 

  • Schwaiger K, Stierstorfer B, Schmahl W et al (2005) Survey on bacterial CNS infections in roe deer (Capreolus capreolus), red deer (Cervus elaphus) and chamois (Rupicapra rupicapra) in Bavaria. Berl Munch Tierarztl Wochenschr 118:45–51

    PubMed  Google Scholar 

  • Smith S, Wang J, Fanning S et al (2014) Antimicrobial resistant bacteria in wild mammals and birds: a coincidence or cause for concern? Ir Vet J 67:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Strachan NJ, Rotariu O, Smith-Palmer A et al (2013) Identifying the seasonal origins of human campylobacteriosis. Epidemiol Infect 141:1267–1275

    Article  CAS  PubMed  Google Scholar 

  • Süld K, Valdmann H, Laurimaa L et al (2014) An invasive vector of zoonotic disease sustained by anthropogenic resources: the raccoon dog in Northern Europe. PLoS One 9, e96358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tham W, Bannerman E, Bille J et al (1999) Listeria monocytogenes subtypes associated with mortality among fallow deer (Dama dama). J Zoo Wildl Med 30:545–549

    CAS  PubMed  Google Scholar 

  • Vargas RHM, Reich F, Klein G et al (2013) Bacterial contamination and antibiotic resistance of isolates from packaged game meat. Fleischwirtschaft 93:179–182

    CAS  Google Scholar 

  • Vicente J, Höfle U, Garrido JM et al (2006) Wild boar and red deer display high prevalences of tuberculosis-like lesions in Spain. Vet Res 37:107–119

    Article  PubMed  Google Scholar 

  • Vicente J, Barasona JA, Acevedo P et al (2013) Temporal trend of tuberculosis in wild ungulates from Mediterranean Spain. Transbound Emerg Dis 60:S92–S103

    Article  Google Scholar 

  • Vieira‐Pinto M, Morais L, Caleja C et al (2011) Salmonella sp. in game (Sus scrofa and Oryctolagus cuniculus). Foodborne Pathog Dis 8:739–740

    Article  PubMed  Google Scholar 

  • Wacheck S, Fredriksson-Ahomaa M, Konig M et al (2010) Wild boars as an important reservoir for foodborne pathogens. Foodborne Pathog Dis 7:307–312

    Article  CAS  PubMed  Google Scholar 

  • Wahlström H, Tysen E, Engvall EO et al (2003) Survey of Campylobacter species, VTEC O157 and Salmonella species in Swedish wildlife. Vet Rec 153:74–80

    Article  PubMed  Google Scholar 

  • Wahlström H, Lindberg A, Lindh J et al (2012) Investigations and actions taken during 2011 due to the first finding of Echinococcus multilocularis in Sweden. Euro Surveill 17:20215

    PubMed  Google Scholar 

  • Waldenström J, Broman T, Carlsson I et al (2002) Prevalence of Campylobacter jejuni, Campylobacter lari and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl Environ Microbiol 68:5911–5917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waldenström J, Axelsson-Olsson D, Olsen B et al (2010) Campylobacter jejuni colonization in wild birds: results from an infection experiment. PLoS One 5, e9082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Widén F, Meredith A, Weissenböck H et al (2012) Other virus infections. In: Gavier-Widen D, Meredith A, Duff JP (eds) Infectious diseases of wild mammals and birds in Europe, 1st edn. Wiley-Blackwell, Chichester, pp 249–262

    Chapter  Google Scholar 

  • Wiratsudakul A, Sariya L, Prompiram P et al (2012) Detection and phylogenetic characterization of hepatitis E virus genotype 3 in a captive wild boar in Thailand. J Zoo Wildl Med 43:640–644

    Article  PubMed  Google Scholar 

  • Woolhouse MEJ, Haydon DT, Antia R (2005) Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol Evol 20:238–244

    Article  PubMed  Google Scholar 

  • Wuthe HH, Schonberg A (1999) Listeriosis in the European brown hare in northern Germany. Berl Munch Tierarztl Wochenschr 112:98–99

    CAS  PubMed  Google Scholar 

  • Yegorova I, Selyaninov J, Fertickov V (2012) Listeria in the Wildlife of Russia. In: Romano A, Giordano CF (eds) Listeria infections: epidemiology, pathogenesis and treatment. Nova, Hauppage, NY, pp 167–176

    Google Scholar 

  • Zaytseva E, Ermolaeva S, Somov GP (2007) Low genetic diversity and epidemiological significance of Listeria monocytogenes isolated from wild animals in the far east of Russia. Infect Genet Evol 7:736–742

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Navarro-Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Navarro-Gonzalez, N., Ugarte-Ruiz, M., Domínguez, L., Ruiz-Fons, F. (2016). A European Perspective on the Transmission of Foodborne Pathogens at the Wildlife–Livestock–Human Interface. In: Jay-Russell, M., Doyle, M. (eds) Food Safety Risks from Wildlife. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-319-24442-6_3

Download citation

Publish with us

Policies and ethics