Skip to main content

Biomolecular SERS Applications

  • Chapter
  • First Online:
Surface-Enhanced Raman Spectroscopy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

SERS spectroscopy is currently undergoing rapid development as an ultra-sensitive and highly specific analytical technique for biomolecular detection. This chapter gives an overview of SERS study of biomolecules primarily of nucleic acids, proteins, membranes and their components. Both detection schemes—intrinsic and extrinsic—will be introduced. Direct spectral signature of the biomolecule can be obtained by an intrinsic scheme. An extrinsic approach using labelling of target biomolecule or SERS tag consisting of metallic NPs and Raman reporter molecule brings indirect information but much better sensitivity. For example, SERS detection limits for labelled oligonucleotides can be about 10−11–10−12 M, which is about three orders of magnitude better than those provided by standard fluorescence technique. Hybridization of a nucleic acid to its complementary target serves to its unambiguous molecular recognizability. For protein detection, immunoassay platforms are employed to detect the target antigens or antibodies (typically small proteins) through specific antibody-antigen binding. SERS tags formed by metallic nanoparticles with attached Raman reporter molecules (and biorecognition element such as an antibody in the case of immunoassays) are used in SERS extrinsic hybridization and immunoassay experiments, thus increasing their sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Various terms for “SERS tag” can be found in literature, e.g. SERS nanotag, SERS probe, SERS-encoded NP, SERS label, extrinsic Raman labels (ERLs).

References

  • J.L. Abell, J.M. Garren, J.D. Driskell, R.A. Tripp, Y. Zhao, Label-free detection of micro-RNA hybridization using surface-enhanced Raman spectroscopy and least-squares analysis. J. Am. Chem. Soc. 134, 12889 (2012)

    Article  Google Scholar 

  • R. Aroca, Surface-Enhanced Vibrational Spectroscopy (John Wiley & Sons, Chichester, 2006)

    Book  Google Scholar 

  • E. Bailo, V. Deckert, Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew. Chem. Int. Ed. 47, 1658 (2008)

    Article  Google Scholar 

  • K.C. Bantz, A.F. Meyer, N.J. Wittenberg, H. Im, O. Kurtulus, S.H. Lee, N.C. Lindquist, S.H. Oh, C.L. Haynes, Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 13, 11551 (2011)

    Article  Google Scholar 

  • A. Barhoumi, N.J. Halas, Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 12792 (2010)

    Article  Google Scholar 

  • A. Barhoumi, D. Zhang, F. Tam, N.J. Halas, Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 130, 5523 (2008)

    Article  Google Scholar 

  • S.E.J. Bell, N.M.S. Sirimuthu, Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 128, 15580 (2006)

    Article  Google Scholar 

  • A.R. Bizzarri, S. Cannistraro, Surface-enhanced resonance Raman spectroscopy signals from single myoglobin molecules. Appl. Spectrosc. 56, 1531 (2002)

    Article  ADS  Google Scholar 

  • Y.C. Cao, R. Jin, C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536 (2002)

    Article  ADS  Google Scholar 

  • Y.C. Cao, R. Jin, J.M. Nam, C.S. Thaxton, C.A. Mirkin, Raman dye-labeled nanoparticle probes for proteins. J. Am. Chem. Soc. 125, 14676 (2003)

    Article  Google Scholar 

  • S. Caporali, V. Moggi-Cecchi, M. Muniz-Miranda, M. Pagliali, G. Pratesi, V. Schettino, SERS investigation of possible extraterrestrial life traces: experimental adsorption of adenine on a Martian meteorite. Meteorit. Planet. Sci. 47, 853 (2012)

    Article  ADS  Google Scholar 

  • Z. Chen, S.M. Tabakman, A.P. Goodwin, M.G. Kattah, D. Daranciang, X.R. Wang, G.Y. Zhang, X.L. Li, Z. Liu, P.J. Utz, K.L. Jiang, S.S. Fan, H.J. Dai, Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 26, 1285 (2008)

    Article  Google Scholar 

  • H. Chon, S. Lee, S.W. Son, C.H. Oh, J. Choo, Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hallow gold nanospheres. Anal. Chem. 81, 3029 (2009)

    Google Scholar 

  • G.D. Chumanov, T.M. Cotton, Surface-enhanced Raman scattering for discovering and scoring single-base differences in DNA. Proc. SPIE Biomed. Appl. Raman Spectrosc. 3608, 204 (1999)

    Article  ADS  Google Scholar 

  • R.A. Copeland, S.P.A. Fodor, T.G. Spiro, Surface-enhanced Raman spectra of an active flavo enzyme: glucose oxidase and riboflavin binding protein on silver particles. J. Am. Chem. Soc. 106, 3872 (1984)

    Article  Google Scholar 

  • T.M. Cotton, The applications of SERS to biological systems, in Spectroscopy of Surfaces, ed. by R.J.H. Clark, R.E. Hester (Wiley & Sons, Chichester, 1988), pp. 90–153

    Google Scholar 

  • T.M. Cotton, S.G. Schultz, R.P. Van Duyne, Surface-enhanced resonance Raman scattering from cytochrome c and myoglobin adsorbed on a silver electrode. J. Am. Chem. Soc. 102, 7960 (1980)

    Article  Google Scholar 

  • T.M. Cotton, J.-H. Kim, G.D. Chumanov, Application of surface-enhanced Raman spectroscopy to biological systems. J. Raman Spectrosc. 22, 729 (1991)

    Article  ADS  Google Scholar 

  • Y. Cui, B. Ren, J. Yao, R. Gu, Z.Q. Tian, Multianalyte immunoassay based on surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 38, 896 (2007)

    Article  ADS  Google Scholar 

  • R. Das, R. Jagannathan, C. Sharan, U. Kumar, P. Poddar, Mechanistic study of surface functionalization of enzyme lysozyme synthesized Ag and Au nanoparticles using surface enhanced Raman spectroscopy. J. Phys. Chem. C 113, 21493 (2009)

    Article  Google Scholar 

  • I. Delfino, A.R. Bizzarri, S. Cannistraro, Single-molecule detection of yeast cytrochrome c by surface-enhanced Raman spectroscopy. Biophys. Chem. 113, 41 (2005)

    Article  Google Scholar 

  • F.T. Docherty, P.B. Monaghan, R. Keir, D. Graham, W.E. Smith, J.M. Cooper, The first SERRS multiplexing from labelled oligonucleotides in a microfluidics lab-on-a-chip. Chem. Commun. 1, 118 (2004)

    Article  Google Scholar 

  • X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, NIR SERS detection of immune reaction on gold colloid particles without bound/free antigen separation. J. Raman Spectrosc. 29, 739 (1998)

    Article  ADS  Google Scholar 

  • P. Douglas, K.M. McCarney, D. Graham, W.E. Smith, Protein–nanoparticle labelling probed by surface enhanced resonance Raman spectroscopy. Analyst 132, 865 (2007)

    Article  ADS  Google Scholar 

  • V.P. Drachev, V.M. Shalaev, Biomolecule sensing with adaptive plasmonic nanostructures, in Surface-Enhanced Raman Scattering: Physics and Applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer-Verlag, Berlin Heidelberg 2006), pp. 351–366 (Top. Appl. Phys.)

    Chapter  Google Scholar 

  • V.P. Drachev, M.D. Thoreson, E.N. Khaliullin, V.J. Davisson, V.M. Shalaev, Surface-enhanced Raman difference between human insulin and insulin lispro detected with adoptive nanostructures. J. Phys. Chem. B 108, 18046 (2004)

    Article  Google Scholar 

  • J.D. Driskell, J.M. Uhlenkamp, R.J. Lipert, M.D. Porter, Surface-enhanced Raman scattering immunoassays using a rotated capture substrate. Anal. Chem. 79, 4141 (2007)

    Article  Google Scholar 

  • J.D. Driskell, A.G. Seto, L.P. Jones, S. Jokela, R.A. Dluhy, Y.P. Zhao, R.A. Tripp, Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens. Bioelectron. 24, 917 (2008)

    Article  Google Scholar 

  • K. Faulds, Multiplexed SERS for DNA detection, in Raman Spectroscopy for Nanomaterials Characterization, ed. by C.S.S.R. Kumar (Springer, Berlin Heidelberg, 2012), pp. 353–378

    Chapter  Google Scholar 

  • K. Faulds, W.E. Smith, D. Graham, Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal. Chem. 76, 412 (2004)

    Article  Google Scholar 

  • K. Faulds, R. Jarvis, W.E. Smith, D. Graham, R. Goodacre, Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst 133, 1505 (2008)

    Article  ADS  Google Scholar 

  • C. Garrido, T. Aguayo, E. Clavijo, J.S. Gómez-Jeria, M.M. Campos-Vallette, The effect of the pH on the interaction of L-arginine with colloidal silver nanoparticles. A Raman and SERS study. J. Raman Spectrosc. 44, 1105 (2013)

    Article  ADS  Google Scholar 

  • J.L. Gong, Y. Liang, Y. Huang, J.W. Chen, J.H. Jiang, G.L. Shen, R.Q. Yu, Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosens. Bioelectron. 22, 1501 (2007)

    Article  Google Scholar 

  • D. Graham, K. Faulds, Quantitative SERRS for DNA sequence analysis. Chem. Soc. Rev. 37, 1042 (2008)

    Article  Google Scholar 

  • D. Graham, W.E. Smith, A.M.T. Linacre, C.H. Munro, N.D. Watson, P.C. White, Selective detection of deoxyribonucleic acid at ultralow concentrations by SERRS. Anal. Chem. 69, 4703 (1997)

    Article  Google Scholar 

  • D. Graham, D.G. Thompson, W.E. Smith, K. Faulds, Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat. Nanotechnol. 3, 548 (2008)

    Article  ADS  Google Scholar 

  • L. Grajcar, V. Huteao, T. Huynh-Dinh, M.-H. Baron, A SERS probe for adenyl residues available for intermolecular interactions. Part II—Reactive adenyl sites in highly diluted DNA. J. Raman Spectrosc. 32, 1037 (2001)

    Article  ADS  Google Scholar 

  • L. Grajcar, C. El Amri, M. Ghomi, S. Fermandjian, V. Huteau, R. Mandel, S. Lecomte, M.H. Baron, Assessment of adenyl residue reactivity within model nucleic acids by surface enhanced Raman spectroscopy. Biopolymers 82, 6 (2006)

    Article  Google Scholar 

  • D.S. Grubisha, R.J. Lipert, H.Y. Park, J. Driskell, M.D. Porter, Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 75, 5936 (2003)

    Article  Google Scholar 

  • X. Gu, Y.R. Yan, G. Jinag, J. Adkins, J. Shi, G. Jianh, S. Tian, Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection. Anal. Bioanal. Chem. 406, 1885 (2014)

    Article  Google Scholar 

  • L. Guerrini, Z. Krpetic, D. van Lierop, R.A. Alvarez-Puebla, D. Graham, Direct surface-enhanced Raman scattering analysis of DNA duplexes. Angew. Chem. Int. Ed. 54, 1144 (2015)

    Article  Google Scholar 

  • S. Habuchi, M. Cotlet, R. Gronheid, G. Dirix, J. Michiels, J. Vanderleyden, F.C.D. Schryver, J. Hofkens, Single-molecule surface enhanced resonance Raman spectroscopy of the enhanced green fluorescent protein. J. Am. Chem. Soc. 125, 8446 (2003)

    Article  Google Scholar 

  • X.X. Han, B. Zhao, Y. Ozaki, Surface-enhanced Raman scattering for protein detection. Anal. Bioanal. Chem. 394, 1719 (2009a)

    Article  Google Scholar 

  • X.X. Han, Y. Kitahama, T. Itoh, C.X. Wang, B. Zhao, Y. Ozaki, Protein-mediated sandwich strategy for surface-enhanced Raman scattering: application to versatile protein detection. Anal. Chem. 81, 3350 (2009b)

    Article  Google Scholar 

  • X.X. Han, B. Huang, B. Zhao, Y. Ozaki, Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering. Anal. Chem. 81, 3329 (2009c)

    Article  Google Scholar 

  • X.X. Han, Y. Xie, B. Zhao, Y. Ozaki, Highly sensitive protein concentration assay over a wide range via surface-enhanced Raman scattering of coomassie brilliant blue. Anal. Chem. 82, 4325 (2010)

    Article  Google Scholar 

  • C. Heywang, M. Saint-Pierre Chazalet, M. Masson, A. Garnier-Suillerot, J. Bolard, Incorporation of exogeneous molecules inside mono- and bilayers of phospholipids: influence of the mode of preparation revealed by SERRS and surface pressure studies. Langmuir 12, 6459 (1996)

    Google Scholar 

  • P. Hildebrandt, J.J. Feng, A. Kranich, K.H. Ly, D.F. Martín, M. Martí, D.H. Murgida, D.A. Paggi, N. Wisitruangsakul, M. Sezer, I.M. Weidinger, I. Zebger, Electron transfer of proteins at membrane models, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley-WCH, Weinheim, 2011), pp. 219–240

    Google Scholar 

  • R.E. Holt, T.M. Cotton, Surface-enhanced resonance Raman and electrochemical investigation of glucose-oxidase catalysis at a silver electrode. J. Am. Chem. Soc. 111, 2815 (1989)

    Article  Google Scholar 

  • J. Hu, P.C. Zheng, J.H. Jiang, G.L. Shen, R.Q. Yu, G.K. Liu, Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy. Anal. Chem. 81, 87 (2009)

    Article  Google Scholar 

  • H. Hwang, H. Chon, J. Choo, J.K. Park, Optoelectrofluidic sandwich immunoassays for detection of human tumor marker using surface-enhanced Raman scattering. Anal. Chem. 82, 7603 (2010)

    Article  Google Scholar 

  • M. Iosin, F. Toderas, P.L. Baldeck, S. Astilean, Study of protein-gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J. Mol. Struct. 924–26, 196 (2009)

    Article  Google Scholar 

  • N.R. Isola, D.L. Stokes, T. Vo-Dinh, Surface enhanced Raman gene probe for HIV detection. Anal. Chem. 70, 1352 (1998)

    Article  Google Scholar 

  • A. Kandakkathara, I. Utkin, R. Fedosejevs, Surface-enhanced Raman scattering (SERS) detection of low concentrations of trypthophan amino acid in silver colloid. Appl. Spectrosc. 65, 507 (2011)

    Article  ADS  Google Scholar 

  • K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  • E. Koglin, J.-M. Séquaris, Surface enhanced Raman scattering of biomolecules. Top. Curr. Chem. 134, 1 (1986)

    Article  Google Scholar 

  • P. Krysinski, A. Zebrowska, A. Michota, J. Bukowska, L. Becucci, M. Moncelli, Tethered mono- and bilayer lipid membranes on Au and Hg. Langmuir 17, 3852 (2001)

    Article  Google Scholar 

  • J. Kundu, O. Neumann, B.G. Janesko, D. Zhang, S. Lal, A. Barhoumi, G.E. Scuseria, N.J. Halas, Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies. J. Phys. Chem. C 113, 14390 (2009a)

    Article  Google Scholar 

  • J. Kundu, C.S. Levin, N.J. Halas, Real-time monitoring of lipid transfer between vesicles and hybrid bilayers on Au nanoshells using surface-enhanced Raman scattering (SERS). Nanoscale 1, 114 (2009b)

    Article  ADS  Google Scholar 

  • G. Lajos, D. Jancura, D.P. Miskovsky, J.V. Garcia-Ramos, S. Sanchez-Cortes, Interaction of the photosensitizer hypericin with low-density lipoproteins and phosphatidylcholine: a surface-enhanced Raman scattering and surface-enhanced fluorescence study. J. Phys. Chem. C 113, 7147 (2009)

    Article  Google Scholar 

  • I.A. Larmour, K. Faulds, D. Graham, The past, present and future of enzyme measurements using surface enhanced Raman spectroscopy. Chem. Sci. 1, 151 (2010)

    Article  Google Scholar 

  • C.S. Levin, J. Kundu, B.G. Janesko, G.E. Scuseria, R.M. Raphael, N.J. Halas, Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies. J. Phys. Chem. B 112, 14168 (2008)

    Article  Google Scholar 

  • E. Lipiec, R. Sekine, J. Bielecki, W.M. Kwiatek, B.R. Wood, Molecular characterization of DNA double strand breaks with tip-enhanced Raman scattering. Angew. Chem. Int. Ed. 53, 169 (2014)

    Article  Google Scholar 

  • X.L. Liu, S.G. Huan, Y. Bu, G. Shen, R. Yu, Liposome-mediated enhancement of the sensitivity in immunoassay based on surface-enhanced Raman scattering at gold nanosphere array substrate. Talanta 75, 797 (2008)

    Article  Google Scholar 

  • I.D.G. Macdonald, W.E. Smith, Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12, 706 (1996)

    Article  Google Scholar 

  • N.E. Marotta, K.R. Beavers, L.A. Bottomley, Limitations of surface enhanced Raman scattering in sensing DNA hybridization demonstrated by label-free DNA oligos as molecular rulers of distance-dependent enhancement. Anal. Chem. 85, 1440 (2013)

    Article  Google Scholar 

  • C.D. McGuinness, A.M. Macmillan, J. Karolin, W.E. Smith, D. Graham, D.J.C. Pickup, D.J.S. Birch, Single molecule level detection of allophycocyanin by surface enhanced resonance Raman scattering. Analyst 132, 633 (2007)

    Article  ADS  Google Scholar 

  • D.H. Murgida, P. Hildebrandt, Surface-enhanced vibrational spectroelectrochemistry: electric-field effects on redox and redox-coupled processes of heme proteins, in Surface-enhanced Raman scattering: physics and applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer-Verlag, Berlin Heidelberg 2006), pp. 313–334 (Top. Appl. Phys.)

    Chapter  Google Scholar 

  • D.H. Murgida, P. Hildebrandt, Disentangling interfacial redox processes of proteins by SERR spectroscopy. Chem. Soc. Rev. 37, 937 (2008)

    Article  Google Scholar 

  • R. Narayanan, R.J. Lipert, M.D. Porter, Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Anal. Chem. 80, 2265 (2008)

    Article  Google Scholar 

  • J. Ni, R.J. Lipert, G.B. Dawson, M.D. Porter, Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal. Chem. 71, 4903 (1999)

    Article  Google Scholar 

  • E. Papadopoulou, S.E.J. Bell, DNA reorientation on Au nanoparticles: label-free detection of hybridization by surface enhanced Raman spectroscopy. Chem. Commun. 47, 10966 (2011a)

    Article  Google Scholar 

  • E. Papadopoulou, S.E.J. Bell, Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 50, 9058 (2011b)

    Article  Google Scholar 

  • E. Papadopoulou, S.E.J. Bell, Label-free detection of nanomolar unmodified single- and double-stranded DNA by using surface-enhanced Raman spectroscopy on Ag and Au colloids. Chem. Eur. J. 18, 5394 (2012)

    Article  Google Scholar 

  • I. Pavel, E. McCarney, A. Elkhaled, A. Morrill, K. Plaxco, M. Moskovits, Label-free SERS detection of small proteins modified to act as bifunctional linkers. J. Phys. Chem. C 112, 4880 (2008)

    Article  Google Scholar 

  • N. Pazos-Perez, R.A. Álvarez-Puebla, SERS-encoded particles, in Raman spectroscopy for nanomaterials characterization, ed. by C.S.S.R. Kumar (Springer, Berlin Heidelberg, 2012), pp. 33–50

    Chapter  Google Scholar 

  • M.A. Penn, D.M. Drake, J.D. Driskell, Accelerated surface-enhanced Raman spectroscopy (SERS)-based immunoassay on a gold-plated membrane. Anal. Chem. 85, 8609 (2013)

    Article  Google Scholar 

  • R. Picorel, R.E. Holt, R. Heald, T.M. Cotton, M. Seibert, Stability of isolated bacterial and photosystem-II reaction center complexes on Ag electrode surfaces—a surface-enhanced resonance Raman study. J. Am. Chem. Soc. 113, 2839 (1991)

    Article  Google Scholar 

  • E. Podstawka, Y. Ozaki, L.M. Proniewicz, Surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver. Appl. Spectrosc. 58, 570 (2004a)

    Article  ADS  Google Scholar 

  • E. Podstawka, Y. Ozaki, L.M. Proniewicz, Adsorption of S-S containing proteins on a colloidal surface studied by surface-enhanced Raman spectroscopy. Appl. Spectrosc. 58, 1147 (2004b)

    Article  ADS  Google Scholar 

  • M.D. Porter, R.L. Lipert, L.M. Siperko, G. Wang, R. Narayanan, SERS as a bioassay platform: fundamentals, design, and applications. Chem. Soc. Rev. 37, 1001 (2008)

    Article  Google Scholar 

  • E. Prado, N. Daugey, S. Plumet, L. Servant, S. Lecomte, Quantitative label-free RNA detection using surface-enhanced Raman spectroscopy. Chem. Commun. 47, 7425 (2011)

    Article  Google Scholar 

  • L. Rodríguez-Lorenzo, R. de la Rica, R.A. Alvarez-Puebla, L.M. Liz-Marzán, M.M. Stevens, Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nature Mat. 11, 604 (2012)

    Article  ADS  Google Scholar 

  • T.E. Rohr, T. Cotton, N. Fan, P.J. Tarcha, Immunoassay employing surface-enhanced Raman spectroscopy. Anal. Biochem. 182, 388 (1989)

    Article  Google Scholar 

  • G. Rusciano, A.C. De Luca, G. Pesce, A. Sasso, G. Oliviero, J. Amato, N. Borbone, S. D’Errico, V. Piccialli, G. Piccialli, L. Mayol, Label-free probing of G-quadruplex formation by surface-enhanced Raman scattering. Anal. Chem. 83, 6849 (2011)

    Article  Google Scholar 

  • S. Schlücker, SERS microscopy: nanoparticle probes and biomedical applications, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley-WCH, Weinheim, 2011), pp. 263–284

    Google Scholar 

  • S. Schlücker, Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756 (2014)

    Article  Google Scholar 

  • P. Šimáková, M. Procházka, E. Kočišová, SERS Microspectroscopy of biomolecules on dried Ag colloidal drops. Spectrosc. Int. J. 27, 449 (2012)

    Google Scholar 

  • P. Šimáková, M. Procházka, E. Kočišová, Sensitive Raman spectroscopy of lipids based on drop deposition using DCDR and SERS. J. Raman Spectrosc. 44, 1479 (2013)

    Article  Google Scholar 

  • W.E. Smith, Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev. 37, 955 (2008)

    Article  Google Scholar 

  • G. Smulevich, T.G. Spiro, Surface enhanced Raman-spectroscopic evidence that adsorption on silver particles can denature heme-proteins. J. Phys. Chem. 89, 5168 (1985)

    Article  Google Scholar 

  • R. Stevenson, K. Faulds, D. Graham, Quantitative DNA analysis using surface-enhanced resonance Raman scattering, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley-WCH, Weinheim, 2011), pp. 241–262

    Google Scholar 

  • R. Treffer, R. Böhme, T. Deckert-Gaudig, K. Lau, S. Tiede, X. Lin, V. Deckert, Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. Biochem. Soc. Trans. 40, 609 (2012)

    Article  Google Scholar 

  • E.A. Vitol, E. Brailoiu, Z. Orynbayeva, N.J. Dun, G. Friedman, Y. Gogotsi, Surface-enhanced Raman spectroscopy as a tool for detecting Ca2+ mobilizing second messengers in cell extracts. Anal. Chem. 82, 6770 (2010)

    Article  Google Scholar 

  • T. Vo-Dinh, D.L. Stokes, G.D. Griffin, M. Volkan, U.J. Kim, M.I. Simon, Surface-enhanced Raman scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc. 30, 785 (1999)

    Article  ADS  Google Scholar 

  • T. Vo-Dinh, F. Yan, M.B. Wabuyele, Surface-enhanced Raman scattering for medical diagnostics and molecular imaging, in Surface-Enhanced Raman Scattering: Physics and Applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer-Verlag, Berlin Heidelberg 2006), pp. 409–426 (Top. Appl. Phys.)

    Chapter  Google Scholar 

  • Y. Wang, H. Wei, B. Li, W. Ren, S. Guo, S. Dong, E. Wang, SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem. Commun. 48, 5220 (2007)

    Article  Google Scholar 

  • G. Wang, H. Park, R. Lipert, M.D. Porter, Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays. Anal. Chem. 81, 9643 (2009)

    Article  Google Scholar 

  • G.F. Wang, R.J. Lipert, M. Jain, S. Kaur, S. Chakraboty, M.P. Torres, S.K. Batra, R.E. Brand, M.D. Porter, Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. Anal. Chem. 83, 2554 (2011)

    Article  Google Scholar 

  • Y. Wang, B. Yan, L. Chen, SERS tags: novel optical nanotags for bioanalysis. Chem. Rev. 113, 1391 (2013)

    Article  Google Scholar 

  • Y. Wang, R. Vaidyanathan, M.J.A. Shiddiky, M. Trau, Enabling rapid and specific surface-enhanced Raman scattering immunoassay using nanoscaled surface shear forces. ACS Nano 9, 6354 (2015)

    Article  Google Scholar 

  • F. Wei, D. Zhang, N.J. Halas, J.D. Hartgerink, Aromatic amino acids providing characteristics motifs in the Raman and SERS spectroscopy of peptides. J. Phys. Chem. B 112, 9158 (2008)

    Article  Google Scholar 

  • H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357 (1999)

    Article  ADS  Google Scholar 

  • L.J. Xu, C. Zong, X.S. Zheng, P. Hu, J.M. Feng, B. Ren, Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal. Chem. 86, 2238 (2014)

    Article  Google Scholar 

  • N.R. Yaffe, E.W. Blanch, Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids. Vib. Spectrosc. 48, 196 (2008)

    Article  Google Scholar 

  • D. Zhang, K.F. Domke, B. Pettinger, Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au(III). Chem. Phys. Chem. 11, 1662 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Prochazka .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prochazka, M. (2016). Biomolecular SERS Applications. In: Surface-Enhanced Raman Spectroscopy. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-23992-7_5

Download citation

Publish with us

Policies and ethics