Skip to main content

Advertisement

Log in

Surface-enhanced Raman scattering for protein detection

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Proteins are essential components of organisms and they participate in every process within cells. The key characteristic of proteins that allows their diverse functions is their ability to bind other molecules specifically and tightly. With the development of proteomics, exploring high-efficiency detection methods for large-scale proteins is increasingly important. In recent years, rapid development of surface-enhanced Raman scattering (SERS)-based biosensors leads to the SERS realm of applications from chemical analysis to nanostructure characterization and biomedical applications. For proteins, early studies focused on investigating SERS spectra of individual proteins, and the successful design of nanoparticle probes has promoted great progress of SERS-based immunoassays. In this review we outline the development of SERS-based methods for proteins with particular focus on our proposed protein-mediated SERS-active substrates and their applications in label-free and Raman dye-labeled protein detection.

Protein-mediated SERS-active substrates for protein detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  2. Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–17

    Article  CAS  Google Scholar 

  3. Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215–5217

    Article  Google Scholar 

  4. Tian ZQ, Ren B, Wu DY (2002) J Phys Chem B 106:9463–9483

    Article  CAS  Google Scholar 

  5. Wang YF, Zhang JH, Jia HY, Li MJ, Zeng JB, Yang B, Zhao B, Xu WQ, Lombardi JR (2008) J Phys Chem C 112:996–1000

    Article  CAS  Google Scholar 

  6. Chang RK, Furtak TE (eds) (1982) In: Surface enhanced Raman scattering. Plenum, New York

    Google Scholar 

  7. Kerker M, Thompson BJ (eds) (1990) Selected papers on surface-enhanced Raman scattering. Society of Photo Optics

  8. Tian ZQ, Ren B (2004) Annu Rev Phys Chem 55:197–229

    Article  CAS  Google Scholar 

  9. Dieringer JA, McFarland AD, Shah NC et al (2006) Faraday Discuss 132:9–26

    Article  CAS  Google Scholar 

  10. Weatherby S (ed) (2006) Surface enhanced Raman spectroscopy. Royal Society of Chemistry

  11. Stiles PL, Dieringer FA, Shah NC, Van Duyne RP (2008) Annu Rev Anal Chem 1:601–626

    Article  CAS  Google Scholar 

  12. Graham D, Goodacre R (ed) (2008) Special issue on surface enhanced Raman scattering, Chem Soc Rev 37(5)

  13. Shanmukh S, Jones L, Driskell J et al (2006) Nano Lett 6:2630–2636

    Article  CAS  Google Scholar 

  14. Zou S, Weaver MJ (1998) Anal Chem 70:2387–2395

    Article  CAS  Google Scholar 

  15. Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley

  16. Kneipp K, Moskovits M, Kneipp H (eds) (2006) In: Surface-enhanced Raman scattering: physics and applications. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  17. Wang JY, Zhu SG, Xun CF (2002) Biochemistry. High Education PressChina

    Google Scholar 

  18. Voet D, Voet JG (2004) Biochemistry, Vol 1, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  19. Twyman RM (2004) Principles of proteomics. BIOS Scientific Publishers, New York

    Google Scholar 

  20. Wilkins MR, Williams KL, Appel RD, Hochstrasser DF (1997) Proteome research: new frontiers in functional genomics. Springer, Berlin Heidelberg New York

    Google Scholar 

  21. Liebler DC (2002) Introduction to proteomics: tools for the new biology. Humana Press, Totowa, NJ

    Google Scholar 

  22. Wasinger VC, Cordwell SJ, Anne CD (1995) Electrophoresis 16:1090–1094

    Article  CAS  Google Scholar 

  23. Westermeier R, Naven T (2002) Proteomics in practice: a laboratory manual of proteome analysis. Wiley-VCH, Weinheim

    Google Scholar 

  24. Eng LH, Schlegel V, Wang D, Neujahr HY, Stankovich MT, Cotton T (1996) Langmuir 12:3055–3059

    Article  CAS  Google Scholar 

  25. Lecomte S, Wackerbarth H, Soulimane T, Buse G, Hildebrandt P (1998) J Am Chem Soc 120:7381–7382

    Article  CAS  Google Scholar 

  26. Etchegoin P, Liem H, Maher RC, Cohen LF, Brown RJC, Milton MJT, Gallop JC (2003) Chem Phys Lett 367:223–229

    Article  CAS  Google Scholar 

  27. Bizzarri AR, Cannistraro S (2002) Appl Spectrosc 56:1531–1537

    Article  CAS  Google Scholar 

  28. Cao YC, Jin R, Nam JM, Thaxton CS, Mirkin CA (2003) J Am Chem Soc 125:14676–14677

    Article  CAS  Google Scholar 

  29. Xu SP, Ji XH, Xu WQ, Li XL, Wang LY, Bai YB, Zhao B, Ozaki Y (2004) Analyst 129:63–68

    Article  CAS  Google Scholar 

  30. Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Anal Chem 75:5936–5943

    Article  CAS  Google Scholar 

  31. Gong JL, Liang Y, Huang Y, Chen JW, Jiang JH, Shen GL, Yu RQ (2007) Biosens Bioelectron 22:1501–1507

    Article  CAS  Google Scholar 

  32. Han XX, Jia HY, Wang YF, Lu ZC, Wang CX, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:2799–2804

    Article  CAS  Google Scholar 

  33. Han XX, Cai LJ, Guo J, Wang CX, Ruan WD, Han WY, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:3020–3024

    Article  CAS  Google Scholar 

  34. Han XX, Kitahama Y, Tanaka Y, Guo J, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:6567–6572

    Article  CAS  Google Scholar 

  35. Grabbe ES, Buck RP (1989) J Am Chem Soc 111:8362–6366

    Article  CAS  Google Scholar 

  36. Niaura G, Gaigalas AK, Vilker VL (1996) J Electroanal Chem 416:167–178

    Article  CAS  Google Scholar 

  37. Murgida DH, Hildebrandt P (2004) Acc Chem Res 37:854–861

    Article  CAS  Google Scholar 

  38. Murgida DH, Hildebrandt P (2001) Angew Chem Int Ed 40:728–731

    Article  CAS  Google Scholar 

  39. Hildebrandt P, Murgida DH (2002) Bioelectrochem Bioenerg 55:139–143

    CAS  Google Scholar 

  40. Lee PV, Meisel D (1982) J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  41. Keating CD, Kovaleski KM, Natan MJ (1998) J Phys Chem B 102:9404–9413

    Article  CAS  Google Scholar 

  42. Pavan Kumar GV, Ashok Reddy BA, Arif M, Kundu TK, Narayana C (2006) J Phys Chem B 110:16787–16792

    Article  CAS  Google Scholar 

  43. Drachev VP, Thoreson MD, Khaliullin EN, Davisson VJ, Shalaev VM (2004) J Phys Chem B 108:18046–18052

    Article  CAS  Google Scholar 

  44. Drachev VP, Nashine VC, Thoreson MD, Ben-Amotz D, Davisson VJ, Shalaev VM (2005) Langmuir 21:8368–8373

    Article  CAS  Google Scholar 

  45. Pieczonka NPW, Goulet PJG, Aroca RF (2006) J Am Chem Soc 128:12626–12627

    Article  CAS  Google Scholar 

  46. Switzer RC, Merril CR, Shifrin S (1979) Anal Biochem 98:231–237

    Article  CAS  Google Scholar 

  47. Oakley BR, Kirsch DR, Morris NR (1980) Anal Biochem 105:361–363

    Article  CAS  Google Scholar 

  48. Merril CR, Pratt ME (1986) Anal Biochem 156:96–110

    Article  CAS  Google Scholar 

  49. Stewart S, Fredericks PM (1999) Spectrochim Acta Part A 55:1615–164

    Article  Google Scholar 

  50. Macdonald IDG, Smith WE (1996) Langmuir 12:706–713

    Article  CAS  Google Scholar 

  51. Yue H, Khoshtariya D, Waldeck DH, Grochol J, Hildebrandt P, Murgida DH (2006) J Phys Chem B 110:19906–19913

    Article  CAS  Google Scholar 

  52. Delfino I, Bizzarri AR, Cannistraro S (2005) Biophys Chem 113:41–51

    Article  CAS  Google Scholar 

  53. Delfino I, Bizzarri AR, Cannistraro S (2006) Chem Phys 326:356–362

    Article  CAS  Google Scholar 

  54. Xu HX, Bjerneld EJ, Kall M, Borjesson L (1999) Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  55. Feng M, Tachikawa H (2008) J Am Chem Soc 130:7443–7448

    Article  CAS  Google Scholar 

  56. Towbin H, Staehelin T, Gordon J (1979) Proc Natl Acad Sci 76:4350–4354

    Article  CAS  Google Scholar 

  57. Burnette WN (1981) Anal Biochem 112:195–203

    Article  CAS  Google Scholar 

  58. Bell SEJ, Sirimuthu NMS (2006) J Am Chem Soc 128:15580–15581

    Article  CAS  Google Scholar 

  59. Bell SEJ, Sirimuthu NMS (2005) J Phys Chem A 109:7405–7410

    Article  CAS  Google Scholar 

  60. Bell SEJ, Mackle JN, Sirimuthu NMS (2005) Analyst 130:545–549

    Article  CAS  Google Scholar 

  61. Kim K, Park HK, Kim NH (2006) Langmuir 22:3421–3427

    Article  CAS  Google Scholar 

  62. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) J Phys Chem B 110:4002–4006

    Article  CAS  Google Scholar 

  63. Guilbault GG (1990) Practical fluorescence, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  64. Kemeny DMJ (1992) Immunol Meth 150:57–76

    Article  CAS  Google Scholar 

  65. Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  66. Blackstock WP, Weir MP (1999) Trends Biotechnol 17:121–127

    Article  CAS  Google Scholar 

  67. MacBeath G, Schreiber SL (2000) Science 289:1760–1763

    CAS  Google Scholar 

  68. Zhu H, Snyder M (2003) Curr Opin Chem Biol 1:55–63

    Article  Google Scholar 

  69. Lakowicz JR, Geddes CD et al (2004) J Fluoresc 14:425–441

    Article  CAS  Google Scholar 

  70. Geddes CD, Lakowicz JR (2002) J Fluoresc 12:121–129

    Article  Google Scholar 

  71. Li XL, Xu WQ, Zhang JH, Jia HY, Yang B, Zhao B, Li BF, Ozaki Y (2004) Langmuir 20:1298–1304

    Article  CAS  Google Scholar 

  72. Ruan WD, Wang CX, Ji N, Lu ZC, Zhou TL, Zhao B, Lombardi JR (2008) Langmuir 24:8417–8420

    Article  CAS  Google Scholar 

  73. Carney J, Braven H, Seal J, Whitworth E (2006) IVD Technol 11:41–51

    Google Scholar 

  74. Zeman EJ, Schatz GC (1987) J Phys Chem 91:634–643

    Article  CAS  Google Scholar 

  75. Jiang J, Bosnick K, Maillard M, Brus L (2003) J Phys Chem B 107:9964–9972

    Article  CAS  Google Scholar 

  76. Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L (2008) Nat Biotechnol 26:83–90

    Article  CAS  Google Scholar 

  77. Driskell JD, Kwarta KM, Lipert RJ, Porter MD, Neill JD, Ridpath JF (2005) Anal Chem 77:6147–6154

    Article  CAS  Google Scholar 

  78. Yakes BJ, Lipert RJ, Bannantine JP, Porter MD (2008) Clin Vaccine Immunol 15:227–234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by the National Natural Science Foundation (Grant Nos. 20573041, 20773044, 20873050) of P.R. China; by the Program for Changjiang Scholars and Innovative Research Team in University (IRT0422), Program for New Century Excellent Talents in University; the 111 project (B06009), the Development Program of the Science and Technology of Jilin Province (20060902–02). This work was also supported by KAKENHI (Grant-in-Aid for Scientific Research) on Priority Area “Strong Photon-Molecule Coupling Fields (No. 470, 20043032)” from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Zhao or Yukihiro Ozaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X.X., Zhao, B. & Ozaki, Y. Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 394, 1719–1727 (2009). https://doi.org/10.1007/s00216-009-2702-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2702-3

Keywords

Navigation