Skip to main content

Electronic Applications of Polyacrylic Rubber and Its Composites

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Abstract

In this chapter, we are going to look at the applications of polyacrylic rubber (ACM) and its composites in electrical industry. The brief introduction to ACM rubbers, its structure, and properties is also included in this chapter. The electrical applications of ACM rubbers are given in two sections: (i) the electrical applications of pristine ACM rubbers; (ii) the electrical applications of ACM composites. In their pristine state, ACM rubbers are widely used as electrical insulators because the atoms in the rubber chain are covalently linked. Furthermore, ACM rubbers are categorized as a dielectric electroactive polymer (EAP), showing the unique electromechanical properties. The most significant characteristic for ACM to our EAPs such as silicone is its ability to undergo large deformation (maximum actuation strains of more than 380 %) and also withstand high elongations, more than 800 %. The most famous application of ACM rubbers as EAP is introduced as “natural muscle” for use in advanced robotics and smart prosthetics. In addition, other applications such as actuators and sensors in optical switches, motors, generators, loudspeakers, as well as haptic and variable-stiffness devices are discussed. This chapter provides the idea of development of composite ACM rubbers which causes the unique versatility of ACM rubbers to manifest extensively. For example, incorporation of carbon black and multiwall carbon nanotube as a conductive filler is discussed as a convenient method to form an interconnected carrier path in insulating ACM rubbers. The conductive ACM composite materials can be widely utilized in electromagnetic (EMI) shielding materials. Micrometer-sized polarizable particles, e.g., piezoelectric particles, can be added to ACM rubbers to make electrorheological (ER) materials. ACM rubbers as ER materials have several applications, such as actuator, MEMS devices, and control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whelan T (1994) Polymer technology dictionary. Springer Science & Business Media, London

    Book  Google Scholar 

  2. Demarco RD (1979) New generation polyacrylate elastomers. Rubber Chem Technol 52(1):173–186

    Article  CAS  Google Scholar 

  3. Seil DA, Wolf FR (1999) Nitrile and polyacrylic rubbers. In: Morton M (ed) Rubber technology, 2nd edn. Springer, Netherlands

    Google Scholar 

  4. www.nskamericas.com (2015) NSK Seals and Shields Protect Bearing investment. NSK Americas

  5. Satoh S, Suzuki T (1982) Rubber hose for automotive fuel line. USA Patent US4330017 A

    Google Scholar 

  6. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287(5454):836–839

    Article  CAS  Google Scholar 

  7. Shankar R, Ghosh TK, Spontak RJ (2007) Dielectric elastomers as next-generation polymeric actuators. Soft Matter 3(9):1116–1129

    Article  CAS  Google Scholar 

  8. Shankar R, Ghosh TK, Spontak RJ (2009) Mechanical and actuation behavior of electroactive nanostructured polymers. Sens Actuators A 151(1):46–52

    Article  CAS  Google Scholar 

  9. Wissler M, Mazza E (2007) Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sens Actuators A 134(2):494–504

    Article  CAS  Google Scholar 

  10. Kornbluh RD, Pelrine R, Pei Q, Heydt R, Stanford S, Oh S, Eckerle J (2002) Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures. In: Smart structures and materials: industrial and commercial applications of smart structures technologies, San Diego, CA. SPIE, pp 254–270

    Google Scholar 

  11. Kornbluh RD, Pelrine R, Joseph J, Heydt R, Pei Q, Chiba S (1999) High-field electrostriction of elastomeric polymer dielectrics for actuation. In: Smart structures and materials: electroactive polymer actuators and devices (EAPAD), Newport Beach, CA. SPIE, pp 149–161

    Google Scholar 

  12. Goulbourne N, Son S, Fox J (2007) Self-sensing McKibben actuators using dielectric elastomer sensors. In: Smart structures and materials: electroactive polymer actuators and devices (EAPAD), San Diego, CA. SPIE, pp 652414–652426

    Google Scholar 

  13. Kornbluh RD, Pelrine R, Joseph J, Heydt R, Pei Q, Chiba S (1999) High-field electrostriction of elastomeric polymer dielectrics for actuation. In: Smart structures and materials: electroactive polymer actuators and devices (EAPAD), Newport Beach, CA SPIE, pp 149–161

    Google Scholar 

  14. Kornbluh RD, Pelrine R, Pei Q, Oh S, Joseph J (2000) Ultrahigh strain response of field-actuated elastomeric polymers. In: Smart structures and materials: electroactive polymer actuators and devices (EAPAD), Newport Beach, CA. SPIE, pp 51–64

    Google Scholar 

  15. Kofod G, Kornbluh RD, Pelrine R, Sommer-Larsen P (2001) Actuation response of polyacrylate dielectric elastomers. In: Smart structures and materials: electroactive polymer actuators and devices, Newport Beach, CA, USA. SIPE, pp 141–147

    Google Scholar 

  16. Kofod G, Sommer-Larsen P, Kornbluh R, Pelrine R (2003) Actuation response of polyacrylate dielectric elastomers. J Intell Mater Syst Struct 14(12):787–793

    Article  CAS  Google Scholar 

  17. Zhang H, Düring L, Kovacs G, Yuan W, Niu X, Pei Q (2010) Interpenetrating polymer networks based on acrylic elastomers and plasticizers with improved actuation temperature range. Polym Int 59(3):384–390

    Article  CAS  Google Scholar 

  18. Carpi F, De Rossi D, Kornbluh R, Pelrine RE, Sommer-Larsen P (2011) Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier Science, Oxford

    Google Scholar 

  19. Pelrine R, Kornbluh RD, Eckerle J, Jeuck P, Oh S, Pei Q, Stanford S (2001) Dielectric elastomers: generator mode fundamentals and applications. In: Smart structures and materials: electroactive polymer actuators and devices (EAPAD), Newport Beach, CA, USA SPIE, pp 148–156

    Google Scholar 

  20. Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE, Washington

    Book  Google Scholar 

  21. Pelrine R, Kornbluh RD, Pei Q, Stanford S, Oh S, Eckerle J, Full RJ, Rosenthal MA, Meijer K (2002) Dielectric elastomer artificial muscle actuators: toward biomimetic motion. In: Smart structures and materials: electroactive polymer actuators and devices (EAPAD), San Diego, CA. SPIE, pp 126–137

    Google Scholar 

  22. Kornbluh RD, Pelrine R, Prahlad H, Heydt R (2004) Electroactive polymers: an emerging technology for MEMS. In: MEMS/MOEMS components and their applications, San Jose, CA. SPIE, pp 13–27

    Google Scholar 

  23. Aschwanden M, Niederer D, Stemmer A (2008) Tunable transmission grating based on dielectric elastomer actuators. In: Electroactive polymer actuators and devices (EAPAD), San Diego, California. SPIE, p 69271R-69271R-69212

    Google Scholar 

  24. Kornbluh RD, Pelrine R, Pei Q, Heydt R, Stanford S, Oh S, Eckerle J (2002) Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures. In: Smart structures and materials: industrial and commercial applications of smart structures technologies, San Diego, CA. SPIE, pp 254–270

    Google Scholar 

  25. O’Halloran A, O’Malley F, McHugh P (2008) A review on dielectric elastomer actuators, technology, applications, and challenges. J Appl Phys 104(7):071101

    Article  Google Scholar 

  26. Ashley S (2003) Artificial muscles. Sci Am 289(4):52–59

    Article  CAS  Google Scholar 

  27. Kornbluh RD, Pelrine R, Prahlad H, Heydt R (2004) Electroactive polymers: an emerging technology for MEMS. In: MEMS/MOEMS components and their applications, San Jose, CA. SPIE, pp 13–27

    Google Scholar 

  28. Chakraborti P, Toprakci HK, Yang P, Di Spigna N, Franzon P, Ghosh T (2012) A compact dielectric elastomer tubular actuator for refreshable Braille displays. Sens Actuators A 179:151–157

    Article  CAS  Google Scholar 

  29. Heydt R, Kornbluh R, Eckerle J, Pelrine R (2006) Sound radiation properties of dielectric elastomer electroactive polymer loudspeakers. In: Smart structures and materials: electroactive polymer actuators and devices (EAPAD), San Diego, CA. SPIE, pp 61681M-61681M–61688

    Google Scholar 

  30. Shian S, Diebold RM, Clarke DR (2013) Tunable lenses using transparent dielectric elastomer actuators. Opt Express 21(7):8669–8676

    Article  CAS  Google Scholar 

  31. Anderson IA, Calius EP, Gisby T, Hale T, McKay T, O’Brien B, Walbran S (2009) A dielectric elastomer actuator thin membrane rotary motor. In: Smart structures and materials: electroactive polymer actuators and devices (EAPAD). SPIE, pp 72871H-1–10

    Google Scholar 

  32. O’Brien B, Thode J, Anderson I, Calius E, Haemmerle E, Xie S (2007) Integrated extension sensor based on resistance and voltage measurement for a dielectric elastomer. In: Smart structures and materials: electroactive polymer actuators and devices (EAPAD), San Diego, California. SPIE, pp 652415-1–11

    Google Scholar 

  33. Pelrine R, Kornbluh R (2009) Variable-Stiffness–Mode Dielectric Elastomer Devices. Adv Sci Technol 61:192–201

    Article  Google Scholar 

  34. Dastoor S, Cutkosky M (2012) Design of dielectric electroactive polymers for a compact and scalable variable stiffness device. In: IEEE international conference on robotics and automation (ICRA), Saint Paul, MN. IEEE, pp 3745–3750

    Google Scholar 

  35. Tjong SC (2012) Polymer composites with carbonaceous nanofillers: properties and applications. Wiley, Weinheim

    Book  Google Scholar 

  36. Bhadra S, Singha NK, Khastgir D (2009) Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites. Curr Appl Phys 9(2):396–403

    Article  Google Scholar 

  37. Colaneri NF, Schacklette LW (1992) EMI shielding measurements of conductive polymer blends. Instrum Meas 41(2):291–297

    Article  Google Scholar 

  38. Sahoo BP, Naskar K, Tripathy DK (2012) Conductive carbon black-filled ethylene acrylic elastomer vulcanizates: physico-mechanical, thermal, and electrical properties. J Mater Sci 47(5):2421–2433

    Article  CAS  Google Scholar 

  39. Yuan Q, Wu D (2010) Low percolation threshold and high conductivity in carbon black filled polyethylene and polypropylene composites. J Appl Polym Sci 115(6):3527–3534

    Article  CAS  Google Scholar 

  40. Sahoo B, Naskar K, Choudhary R, Sabharwal S, Tripathy D (2012) Dielectric relaxation behavior of conducting carbon black reinforced ethylene acrylic elastomer vulcanizates. J Appl Polym Sci 124(1):678–688

    Article  CAS  Google Scholar 

  41. Weston D (2001) Electromagnetic compatibility: principles and applications, 2nd edn (revised and expanded). Taylor & Francis, Boca Raton

    Google Scholar 

  42. Sahoo BP, Naskar K, Tripathy DK (2015) Multiwalled carbon nanotube-filled ethylene acrylic elastomer nanocomposites: influence of ionic liquids on the mechanical, dynamic mechanical, and dielectric properties. Polym Compos. doi:10.1002/pc.23451 (in press)

  43. Hajibaba A, Naderi G, Esmizadeh E, Ghoreishy MHR (2014) Morphology and dynamic-mechanical properties of PVC/NBR blends reinforced with two types of nanoparticles. J Compos Mater 48(2):131–141

    Article  CAS  Google Scholar 

  44. Yanju L, Hejun D, Dianfu W (2001) ER fluid based on inorganic/polymer blend particles and its adaptive viscoelastic properties. Colloids Surf A 189(1–3):203–210

    Article  CAS  Google Scholar 

  45. Tangboriboon N, Sirivat A, Kunanuruksapong R, Wongkasemjit S (2009) Electrorheological properties of novel piezoelectric lead zirconate titanate Pb (Zr 0.5, Ti 0.5) O 3-acrylic rubber composites. Mater Sci Eng, C 29(6):1913–1918

    Article  CAS  Google Scholar 

  46. Tangboriboon N, Wongpinthong P, Sirivat A, Kunanuruksapong R (2011) Electroactive alumina particles embedded in an acrylic elastomer. Polym Compos 32(1):44–51

    Article  CAS  Google Scholar 

  47. Tangboriboon N, Sirivat A, Wongkasemjit S (2008) Electrorheology and characterization of acrylic rubber and lead titanate composite materials. Appl Organomet Chem 22(5):262–269. doi:10.1002/aoc.1388

    Article  CAS  Google Scholar 

  48. Wei K, Bai Q, Meng G, Ye L (2011) Vibration characteristics of electrorheological elastomer sandwich beams. Smart Mater Struct 20(5):055012

    Article  Google Scholar 

  49. Kunanuruksapong R, Sirivat A (2007) Poly(p-phenylene) and acrylic elastomer blends for electroactive application. Mater Sci Eng A 454–455:453–460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Naderi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Esmizadeh, E., Naderi, G., Vahidifar, A. (2016). Electronic Applications of Polyacrylic Rubber and Its Composites. In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_6

Download citation

Publish with us

Policies and ethics