Skip to main content

Electronic Applications of Polymer Electrolytes of Epoxidized Natural Rubber and Its Composites

  • Chapter
  • First Online:
Flexible and Stretchable Electronic Composites

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The hope for composite polymer electrolytes (CPE) to fulfill future electronic applications has encouraged researchers to look up for wider range of polymer candidates, which are suitable for this purpose. Epoxidized natural rubber (ENR) is one of the candidates with polar epoxy group that helps in compatibilization with other polymers and provides coordination sites for fillers and organic or inorganic salt. Besides, low glass transition temperature, good dimensional stability and impact strength, and satisfactory stickiness finally provide sufficient contact between electrolytic layer and electrode for electronic devices. The desirable properties of ENR have earned researchers’ attention to further explore its potential. Hence, this work will attempt to compile and review the ENR, ENR-based, and composite ENR-based electrolytes for electronic applications, especially in ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pummere R, Burkard PA (1922) Uber Kautschuk. Ber Dtsch Chem Ges 55:3458–3472

    Article  Google Scholar 

  2. Davey JE, Loadman MJR (1984) A chemical demonstration of the randomness of epoxidation of natural rubber. Br Polym J 16:134–138

    Article  CAS  Google Scholar 

  3. Swern D (1947) Electronic interpretation of the reactions of olefins with organic peracids. J Am Chem Soc 69:1692–1698

    Article  CAS  Google Scholar 

  4. Rosowsky A (1964) Ethylene oxides. In: Weissberger A (ed) Chemistry of heterocyclic compounds. Wiley, Hoboken

    Google Scholar 

  5. Baker CSL, Gelling IR, Newell R (1985) Epoxidized natural rubber. Rubber Chem Technol 58:67–85

    Article  CAS  Google Scholar 

  6. Gelling IR, Morrison NJ (1985) Sulphur vulcanization and oxidative ageing of epoxidized natural rubber. Rubber Chem Technol 58:243–257

    Article  CAS  Google Scholar 

  7. Gelling IR (1988) Chemistry, structure and properties of epoxidised natural rubber. In: Proceedings international rubber technology conference, Penang, Malaysia, 17–19 October 1988, pp 415–427

    Google Scholar 

  8. Davies CKL, Wolfe SV, Gelling IR, Thomas AG (1983) Strain crystallization random copolymers produced by epoxidation of cis-1,4-polyisoprene. Polymer 24:107–113

    Article  CAS  Google Scholar 

  9. Gelling IR, Porter M (1988). Natural rubber science and technology. In: Roberts AD (ed), Oxford University Press, Oxford, p 359

    Google Scholar 

  10. Cizravi JC, Naginlal C, Lim SL (1999) Moisture-sorption properties and studies on the dilute solution behavior of epoxidized rubber. J Appl Polym Sci 73:1633–1644

    Article  CAS  Google Scholar 

  11. Roux C, Pautrat R, Cheritat R, Ledran F, Danjard JC (1967) Modification de Polymères Insaturés par Époxydation. J Polym Sci Part C Polym Symp 16:4687–4693

    Article  Google Scholar 

  12. Abu A, Sidek D (1989) Easy processing epoxidised natural rubber. J Nat Rubber Res 4:119–132

    Google Scholar 

  13. Gelling IR (1987) Epoxidized natural rubber. Nat Rubber Technol 18:21–29

    CAS  Google Scholar 

  14. Wong ST, Ong LM (1992) Storage stability of epoxyprene. Kautsch Gummi Kunstst 45:284–286

    CAS  Google Scholar 

  15. Burfield DR, Lim KL, Law KS (1984) Epoxidation of natural rubber lattices. J Appl Polym Sci 29:1661–1673

    Article  CAS  Google Scholar 

  16. Saffer A, Johnson BL (1948) Measurement of internal double bonds in polymers by perbenzoic acid addition. Rubber Chem Technol 21:821–829

    Article  Google Scholar 

  17. Kolthoff IM, Lee TS, Mairs MA (1973) Use of perbenzoic acid in analysis of unsaturated compounds. J Appl Polym Sci Poly Chem Ed 2:206–220

    Google Scholar 

  18. Roux C, Pautrat R, Cheritat R, Pinazzi C (1964) Epoxidation of 1,4-cis-polyisoprenes. Comptes Rendus 258:5442–5445

    CAS  Google Scholar 

  19. Mairs JA, Todd J (1932) The oxidation of caoutchouc, Gutta-percha and Balata with hydrogen peroxide. J Chem Soc 29:386–399

    Article  Google Scholar 

  20. Gemmer RV, Golub MA (1978) 13C NMR spectroscopic study of epoxidized 1,4-polyisoprene and 1,4-polybutadiene. J Polym Sci Polym Chem Ed 16:2985–2990

    Article  CAS  Google Scholar 

  21. Gelling IR, Smith JF (1979) Controlled viscosity by natural rubber modification. In: Proceedings of the international rubber conference, Venice, Italy, 3–6 October 1979, pp 140–149

    Google Scholar 

  22. Saito T, Klinklai W, Yamamoto Y, Kawahara S, Isono Y, Ohtake Y (2010) Quantitative analysis for reaction between epoxidized natural rubber and poly(L-lactide) through 1H-NMR spectroscopy. J Appl Polym Sci 115:3598–3604

    Article  CAS  Google Scholar 

  23. Abd El Rahman AMM, El-Shafie M, El Kholy SA (2012) Modification of local asphalt with epoxy resin to be used in pavement. Egypt J Petrol 21:139–147

    Article  Google Scholar 

  24. Ng SC, Gan LH (1981) Reaction of natural rubber latex with performic acid. Eur Polym J 17:1073–1077

    Article  CAS  Google Scholar 

  25. Xu K, He C, Wang Y, Luo Y, Liao S, Peng Z (2012) Preparation and characterization of epoxidized natural rubber. Adv Mater Res 396:478–481

    Google Scholar 

  26. Bradbury JH, Perera MCS (1988) Advances in the epoxidation of unsaturated polymers. Ind Eng Chem Res 27:2196–2203

    Article  CAS  Google Scholar 

  27. Yu H, Zeng Z, Lu G, Wang Q (2008) Processing characteristics and thermal stabilities of gel and sol of epoxidized natural rubber. Eur Polym J 44:453–464

    Article  CAS  Google Scholar 

  28. Gelling IR (1985) Modification of natural rubber latex with peracetic acid. Rubber Chem Technol 58:86–96

    Article  CAS  Google Scholar 

  29. Kumar NR, Roy S, Gupta BR, Bhomic AK (1992) Structural changes in rubber during milling. J Appl Polym Sci 45:937–945

    Article  CAS  Google Scholar 

  30. Ivan G, Giurginca M, Jipa S, Tavaru E, Setnescu T, Setnescu R (1993) Thermo-oxidative behavior of epoxidised natural rubber. J Nat Rubber Res 8:31–36

    CAS  Google Scholar 

  31. Durbateki AJ, Miles CM (1965) Near infrared and nuclear magnetic resonance spectrometry in analysis of butadiene polymers. Anal Chem 37:1231–1235

    Article  Google Scholar 

  32. Hallensleben ML, Schmidt HR, Schuster RH (1995) Epoxidation of poly(cis-1,4-isoprene) microgels. Die AngewandteMakromolekulareChemie 227:87–99

    Google Scholar 

  33. Duch MW, Grant DM (1970) Carbon-13 chemical shift studies of the 1,4-polybutadienes and the 1,4-polyisoprenes. Macromolecules 3:165–174

    Article  CAS  Google Scholar 

  34. Jayawardena S, Reyx D, Durand D, Pinazzi CP (1983) Synthesis of macromolecular antioxidants by reaction of aromatic amines with epoxidized polyisoprenes, 1. Model reactions of aniline with 3,4-epoxy-4-methylheptane and with 1,2-epoxy-3-ethyl-2-methylpentane. Die Makromolekulare Chemie Rapid Communications 4:449–453

    Article  CAS  Google Scholar 

  35. Saendee P, Tangboriboonrat P (2006) Latex interpenetrating polymer networks of epoxidised natural rubber/poly(methyl methacrylate): an insight into the mechanism of epoxidation. Colloid Polym Sci 284:634–643

    Article  CAS  Google Scholar 

  36. Eng AH, Tanaka Y, Gan SN (1997) Some properties of epoxidized deproteinized natural rubber. J Nat Rubber Res 12:82–89

    CAS  Google Scholar 

  37. Heping Y, Sidong L, Zheng P (1999) Preparation and study of epoxidized natural rubber. J Therm Anal Calorim 58:293–299

    Article  CAS  Google Scholar 

  38. Roy S, Gupta BR, Chak TK (1993) Studies on the ageing behaviour of gum epoxidized natural rubber. Kautsch Gummi Kunstst 46:293–296

    CAS  Google Scholar 

  39. Jorge RM, Lopes L, Benzi MR, Ferreira MT, Gomes AS, Nunes RCR (2010) Thiol addition to epoxidized natural rubber: effect of the tensile and thermal properties. Int J Polym Mater 59:330–341

    Article  CAS  Google Scholar 

  40. Tanrattanakul V, Wattanathai B, Tiangjunya A, Muhamud P (2003) In situ epoxidized natural rubber: improved oil resistance of natural rubber. J Appl Polym Sci 90:261–269

    Article  CAS  Google Scholar 

  41. Morss HA (1938) An X-ray study of stretched rubber. J Am Chem Soc 60:237–241

    Article  CAS  Google Scholar 

  42. Bunn CW (1942) Molecular structure and rubber-like elasticity I: the crystal structure of Ăź Gutta-Percha, rubber and polychloroprene. Proc R Soc Lond Ser A 180:40

    Google Scholar 

  43. Bac NV, Huu CC (1996) Synthesis and applications of epoxidized natural rubber. J Macromol Sci Pure Appl Sci A33:1949–1955

    Article  CAS  Google Scholar 

  44. Ratnam CT, Nasir M, Baharin A, Zaman K (2000) Electron beam irradiation of epoxidized natural rubber. Nucl Instrum Methods Phys Res B 171:455–464

    Article  CAS  Google Scholar 

  45. Perera MCS (1990) Reaction of aromatic amines with epoxidized natural rubber latex. J Appl Polym Sci 39:749–758

    Article  CAS  Google Scholar 

  46. Rahman HA (1984) Air permeability on various natural rubber grades. PED Internal Report No. 10. Rubber Research Institute of Malaysia, Kuala Lumpur

    Google Scholar 

  47. Hayashi O, Takahashi T, Kurihara H, Ueno H (1981) Monomer unit sequence distribution in partly-epoxidized trans-1,4-polyisoprene. Polym J 13:215–223

    Article  CAS  Google Scholar 

  48. Burfield DR, Gan SN (1975) Non oxidative crosslinking reactions in natural rubber I: determination of crosslinking groups. J Polym Sci Polym Chem Ed 13:2725–2734

    Article  CAS  Google Scholar 

  49. Davies CKL, Wolfe SV, Gelling IR, Thomas AG (1983) Strain crystallization random copolymers produced by epoxidation of cis-1,4-polyisoprene. Polymer 24:107–113

    Article  CAS  Google Scholar 

  50. Zeng ZQ, Yu HP, Wang QF, Lu G (2008) Effects of coagulation processes on properties of epoxidized natural rubber. J Appl Polym Sci 109:1944–1949

    Article  CAS  Google Scholar 

  51. Nakason C, Sainamsai W, Kaesaman A, Klinpituksa P, Songklanakarin J (2001) Preparation, thermal and flow properties of epoxidised natural rubber. J Sci Technol 23:415–424

    Google Scholar 

  52. Ravanbakhsh M, Khorasani SN, Khalili S (2015) Blending of NR/BR/ENR/EPDM-g-GMA by reactive processing for tire sidewall applications: effects of grafting and ENR on curing characteristics, mechanical properties, and dynamic ozone resistance. J Elastomers Plast. doi:10.1177/0095244315580453

    Google Scholar 

  53. Gelling IR, Porter M (1990) Chemical modifications of natural rubber. Oxford University Press, Oxford, p 359

    Google Scholar 

  54. Saito T, Klinklai W, Kawahara S (2007) Characterization of epoxidized natural rubber by 2D NMR spectroscopy. Polymer 48:750–757

    Article  CAS  Google Scholar 

  55. Alwaan IM, Hassan A, Piah MAM (2015) Effect of zinc borate on mechanical and dielectric properties of metallocene linear low-density polyethylene/rubbers/magnesium oxide composite for wire and cable applications. Iran Polym J 24:279–288

    Article  CAS  Google Scholar 

  56. Poh BT, Soo KW (2015) Effect of blend ratio and testing rate on the adhesion properties of pressure-sensitive adhesives prepared from epoxidized natural rubber 25/acrylonitrile–butadiene rubber blend. J Elastomers Plast. doi:10.1177/0095244314568471

    Google Scholar 

  57. Johnson T, Thomas S (2000) Effect of epoxidation on the transport behaviour and mechanical properties of natural rubber. Polymer 41:7511–7522

    Article  CAS  Google Scholar 

  58. Sam ST, Hani N, Ismail H, Noriman N, Ragunathan S (2014) Investigation of epoxidized natural rubber (ENR 50) as a compatibilizer on cogon grass filled low density polyethylene/soya spent flour. Mater Sci Forum 803:310–316

    Article  CAS  Google Scholar 

  59. Nakason C, Wannavilai V, Kaesaman A (2006) Effect of vulcanization system on properties of thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends. Polym Test 25:34–41

    Article  CAS  Google Scholar 

  60. Margaritis AG, Kalfoglou NK (1987) Miscibility of chlorinated polymers with epoxidized poly(hydrocarbons) 1: epoxidized natural rubber/poly(vinyl chloride) blends. Polymer 28:497–502

    Article  CAS  Google Scholar 

  61. Rahman MA, Penco M, Peroni I, Ramorino G, Janszen G, Landro LD (2012) Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers. Smart Mater Struct 21:035014

    Article  CAS  Google Scholar 

  62. Lin T, Ma S, Lu Y, Guo B (2014) New design of shape memory polymers based on natural rubber crosslinked via Oxa-Michael reaction. ACS Appl Mater Interfaces 6:5695–5703

    Article  CAS  Google Scholar 

  63. Mahmood WAK, Azarian MH (2015) Thermal, surface, nanomechanical and electrical properties of epoxidized natural rubber (ENR-50)/polyaniline composite films. Curr Appl Phys 15:599–607

    Article  Google Scholar 

  64. Abdullah Z, Ibrahim KMYK (2014) Electrical tracking performance of thermoplastic elastomer nanocomposites material under high voltage application. Int J Sci Eng Res 5:708–711

    Google Scholar 

  65. Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2012) LiClO4 salt concentration effect on the properties of PVC-modified low molecular weight LENR50-based solid polymer electrolyte. J Appl Polym Sci 124:2227–2233

    Article  CAS  Google Scholar 

  66. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2011) Effect of ZnO nanoparticles filler concentration on the properties of PEO-ENR50-LiCF3SO3 solid polymeric electrolyte. Ionics 17:451–456

    Article  CAS  Google Scholar 

  67. Tan WL, Bakar MA, Bakar NHHA (2013) Effect of anion of lithium salt on the property of lithium salt-epoxidized natural rubber polymer electrolytes. Ionics 19:601–613

    Article  CAS  Google Scholar 

  68. Mohammad SF, Zainal N, Ibrahim S, Mohamed NS (2013) Conductivity enhancement of (epoxidized natural rubber 50)/poly(ethyl methacrylate)–ionic liquid-ammonium triflate. Int J Electrochem Sci 8:6145–6153

    CAS  Google Scholar 

  69. Zainal N, Idris R, Sabirin MN (2011) Characterization of (ENR-50)-ionic liquid based electrolyte system. Adv Mater Res 287:424–427

    Article  CAS  Google Scholar 

  70. Idris R, Glasse MD, Latham RJ, Linford RG, Schlindwein WS (2001) Polymer electrolytes based on modified natural rubber for use in rechargeable lithium batteries. J Power Sour 94:206–211

    Article  CAS  Google Scholar 

  71. Armand MB (1987) Current state of PEO-based electrolyte. In: MacCallum JR, Vincent CA (eds) Polymer electrolyte reviews, vol 1. Elsevier, London, pp 1–21

    Google Scholar 

  72. Rajendran S, Kannan R, Mahendran O (2001) Ionic conductivity studies in poly(methyl methacrylate)-polyethylene oxide hybrid polymer electrolytes with lithium salts. J Power Sour 96:406–410

    Article  CAS  Google Scholar 

  73. Murata K, Izuchi S, Yoshihisa Y (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45:1501–1508

    Article  CAS  Google Scholar 

  74. Polu AR, Kumar R, Rhee HW (2015) Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21:125–132

    Article  CAS  Google Scholar 

  75. Armand MB (1986) Polymer electrolytes. Annu Rev Mater Sci 16:245–261

    Article  CAS  Google Scholar 

  76. Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 7:319–327

    Article  CAS  Google Scholar 

  77. Chan CH, Sim LH, Kammer HW, Tan W, Abdul Nasir NH (2011) Ionic transport and glass transition temperature of polyether-salt complexes: dependence on molecular mass of polymer. Mater Res Innov 15:14–17

    Article  Google Scholar 

  78. Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176

    Article  CAS  Google Scholar 

  79. Bushkova OV, Animitsa IE, Lirova BI, Zhukovsky VM (1997) Lithium conducting solid polymer electrolytes based on polyacrylonitrile copolymers: ion solvation and transport properties. Ionics 3:396–404

    Article  CAS  Google Scholar 

  80. Every HA, Zhou F, Forsyth M, MacFarlane DR (1998) Lithium ion mobility in poly(vinyl alcohol) based polymer electrolytes as determined by 7Li NMR spectroscopy. Electrochim Acta 43:1465–1469

    Article  CAS  Google Scholar 

  81. Yang JM, Wang SA (2015) Preparation of graphene-based poly(vinyl alcohol)/chitosan nanocomposites membrane for alkaline solid electrolytes membrane. J Membr Sci 477:49–57

    Article  CAS  Google Scholar 

  82. Ohno H, Matsuda H, Mizoguchi K, Tsuchida E (1982) Demonstration of solid-state cell based on poly(vinylidene fluoride) system containing lithium perchlorate. Polym Bull 7:271–275

    CAS  Google Scholar 

  83. Ataollahi N, Ahmad A, Lee TK, Abdullah AR, Rahman MYA (2014) Preparation and characterization of PVDF-MG49-NH4CF3SO3 based solid polymer electrolyte. E-Polym 14:115–120

    CAS  Google Scholar 

  84. Le Nest JF, Gandini A, Cheradama H (1988) Crosslinked polyethers as media for ionic conduction. Br Polym J 20:253–268

    Article  Google Scholar 

  85. Yusoff SNHM, Sim LH, Chan CH, Hashifudin A, Kammer HW (2013) Solid solution of polymer electrolytes based on modified natural rubber. Polym Res J 7:159–169

    CAS  Google Scholar 

  86. Klinklai W, Kawahara S, Marwanta E, Mizumo T, Isono Y, Ohno H (2006) Ionic conductivity of highly deproteinized natural rubber having various amount of epoxy group mixed with lithium salt. Solid State Ionics 177:3251–3257

    Article  CAS  Google Scholar 

  87. Chan CH, Kammer HW, Sim LH, Yusoff SNHM, Hashifudin A, Tan W (2014) Conductivity and dielectric relaxation of Li salt in poly(ethylene oxide) and epoxidized natural rubber polymer electrolytes. Ionics 20:189–199

    Article  CAS  Google Scholar 

  88. Chan CH, Kammer HW (2015) Polymer electrolytes-relaxation and transport properties. Ionics 21:927–934

    Article  CAS  Google Scholar 

  89. Gray FM (1991) Solid polymer electrolyte—fundamentals and technological applications. VCH, Weinheim 245

    Google Scholar 

  90. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, UK

    Google Scholar 

  91. Razali I, Nor WAHWS (2007) Characterization of plasticized and non-plasticised epoxidised natural rubber based polymer electrolyte systems. Solid State Sci Technol 15:147–155

    Google Scholar 

  92. Wieczorek W, Siekierski M (1994) A description of the temperature dependence of the conductivity for composite polymeric electrolytes by effective medium theory. J Appl Phys 76:2220–2226

    Article  CAS  Google Scholar 

  93. Wieczorek W, Zalewska A, Raducha D, Florjanczyk Z, Stevens JR (1998) Composite polyether electrolytes with Lewis acid type additives. J Phys Chem B 102:352–360

    Article  CAS  Google Scholar 

  94. Wieczorek W, Florjanczyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40:2251–2258

    Article  CAS  Google Scholar 

  95. Best AS, Adebahr J, Jacobsson P, MacFarlane DR, Forsyth M (2001) Microscopic interactions in nanocomposite electrolytes. Macromolecules 34:4549–4555

    Article  CAS  Google Scholar 

  96. Adebahr J, Best AS, Byrne N, Jacobsson P, MacFarlane DR, Forsyth M (2003) Ion transport in polymer electrolytes containing nanoparticulate TiO2: the influence of polymer morphology. Phys Chem Chem Phys 5:720–725

    Article  CAS  Google Scholar 

  97. Tan WL, Bakar MA (2014) The effects of magnetite particles and lithium triflate on the thermal behavior and degradation of epoxidized natural rubber (ENR-50). Am-Eurasian J Sustain Agric 8:111–122

    Google Scholar 

  98. Chan CH, Kammer HW (2008) Properties of solid solutions of poly(ethylene oxide)/epoxidized natural rubber blends and LiClO4. J Appl Polym Sci 110:424–432

    Article  CAS  Google Scholar 

  99. Noor SAM, Ahmad A, Rahman MYA, Abu Talib I (2010) Solid polymeric electrolyte of poly(ethylene oxide)-50 % epoxidized natural rubber-lithium triflate (PEO-ENR50-LiCF3SO3). Nat Sci 2:190–196

    Google Scholar 

  100. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Effects of ENR on morphology, chemical interaction and conductivity of PEO-LiCF3SO3 solid polymer electrolyte. Solid State Sci Technol Lett 18:115–125

    CAS  Google Scholar 

  101. Aziz M, Chee LC (2005) Preparation and characterization of PVDF/ENR50 polymer blend electrolyte. Solid State Sci Technol 13:126–133

    Google Scholar 

  102. Latif F, Aziz M, Katun N, Ali AMM, Yahya MZ (2006) The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte. J Power Sour 159:1401–1404

    Article  CAS  Google Scholar 

  103. Ahmad A, Rahman MYA, Ali MLM, Hashim H, Kalam FA (2007) Solid polymeric electrolyte of PVC-ENR-LiClO4. Ionics 13:67–70

    Article  CAS  Google Scholar 

  104. Mohammad SF, Idris R, Mohamed NS (2010) Conductivity studies of ENR based porton conducting polymer electrolytes. Adv Mater Res 129:561–565

    Article  CAS  Google Scholar 

  105. Anuar NK, Zainal N, Mohamed NS, Subban RHY (2012) Studies of poly(ethyl methacrylate) complexed with ammonium trifluoromethanesulfonate. Adv Mater Res 501:19–23

    Article  CAS  Google Scholar 

  106. Chan CH, Kammer HW, Sim LH, Harun MK (2011) Blends of epoxidized natural rubber and thermoplastics. In: Rubber: types, properties and uses. Nova Science Publishers, New York, pp 305–336

    Google Scholar 

  107. Sim LH, Gan SN, Chan CH, Kammer HW, Yahya R (2009) Compatibility and conductivity of LiClO4 free and doped polyacrylate-poly(ethylene oxide) blends. Mater Res Innov 13:278–281

    Article  CAS  Google Scholar 

  108. Mohajir BEE, Heymans N (2001) Changes in structural and mechanical behavior of PVDF with processing and thermomechanical treatments 1: Change in structure. Polymer 42:5661–5667

    Article  Google Scholar 

  109. Rahman MYA, Ahmad A, Wahab SA (2009) Electrical properties of a solid polymeric electrolyte of PVC-ZnO-LiClO4. Ionic 15:221–225

    Article  CAS  Google Scholar 

  110. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2011) Effect of ZnO particles filler concentration on the properties of PEO-ENR50-LiCF3SO3 solid polymeric electrolyte. Ionics 17:451–456

    Article  CAS  Google Scholar 

  111. Feuillade G, Perch P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5:63–69

    Article  CAS  Google Scholar 

  112. Abraham KM, Alamgir M (1990) Li+-Conductive solution polymer electrolytes with liquid-like conductivity. J Electrochem Soc 137:1657–1659

    Article  CAS  Google Scholar 

  113. Mohamed SN, Johari NA, Ali AMM, Harun MK, Yahya MZA (2008) Electrochemical studied on epoxidised natural rubber-based gel polymer electrolytes for lithium-air cells. J Power Sour 183:351–354

    Article  CAS  Google Scholar 

  114. Latif F, Aziz M, Ali AMM, Yahya MZA (2009) The coagulation impact of 50 % epoxidised natural rubber chain in ethylene carbonate-plasticized solid electrolytes. Macromol Symp 227:62–68

    Article  CAS  Google Scholar 

  115. Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2011) Effect of ethylene carbonate (EC) plasticizer on poly(vinyl chloride)-liquid 50 % epoxidised natural rubber (LENR50) based polymer electrolyte. Mater Sci Appl 2:818–826

    CAS  Google Scholar 

  116. Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2012) LiClO4 salt concentration effect on the properties of PVC-modified low molecular weight LENR50-based solid polymer electrolyte. J Appl Polym Sci 124:2227–2233

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Han Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harun, F., Chan, C.H. (2016). Electronic Applications of Polymer Electrolytes of Epoxidized Natural Rubber and Its Composites. In: Ponnamma, D., Sadasivuni, K., Wan, C., Thomas, S., Al-Ali AlMa'adeed, M. (eds) Flexible and Stretchable Electronic Composites. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-23663-6_2

Download citation

Publish with us

Policies and ethics