Skip to main content

Bruton’s Tyrosine Kinase (BTK) Beyond B Lymphocytes: A Protein Kinase with Relevance in Innate Immunity

  • Chapter
Agammaglobulinemia

Part of the book series: Rare Diseases of the Immune System ((RDIS,volume 4))

  • 775 Accesses

Abstract

Bruton’s tyrosine kinase (BTK) is a well-studied molecule that is known to play a critical role in pre-B and B cell receptor signaling. It is crucial for early B cell development in the bone marrow and for B cell activation and differentiation in peripheral lymphoid organs. In addition to its role in B cell development and function, BTK is also expressed in myeloid cell populations. Several groups have investigated the function of BTK in non-B cells of human and murine origin and have identified its role in controlling different aspects of the innate immune response and in diverse pathologies. This chapter summarizes these findings and discusses the possible implications of BTK deficiency in non-B cells involved in the phenotype of human and murine primary immunodeficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huck K, Feyen O, Niehues T, Ruschendorf F, Hubner N, Laws HJ et al (2009) Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest 119(5):1350–1358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Freudenberg J, Lee AT, Siminovitch KA, Amos CI, Ballard D, Li W et al (2010) Locus category based analysis of a large genome-wide association study of rheumatoid arthritis. Hum Mol Genet 19(19):3863–3872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Lindvall JM, Blomberg KE, Valiaho J, Vargas L, Heinonen JE, Berglof A et al (2005) Bruton’s tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol Rev 203:200–215

    Article  CAS  PubMed  Google Scholar 

  4. Chiu CW, Dalton M, Ishiai M, Kurosaki T, Chan AC (2002) BLNK: molecular scaffolding through ‘cis’-mediated organization of signaling proteins. EMBO J 21(23):6461–6472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A et al (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228(1):58–73

    Article  CAS  PubMed  Google Scholar 

  6. Park H, Wahl MI, Afar DE, Turck CW, Rawlings DJ, Tam C et al (1996) Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 4(5):515–525

    Article  CAS  PubMed  Google Scholar 

  7. Rawlings DJ, Scharenberg AM, Park H, Wahl MI, Lin S, Kato RM et al (1996) Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science 271(5250):822–825

    Article  CAS  PubMed  Google Scholar 

  8. Smith CI, Baskin B, Humire-Greiff P, Zhou JN, Olsson PG, Maniar HS et al (1994) Expression of Bruton’s agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J Immunol 152(2):557–565

    CAS  PubMed  Google Scholar 

  9. Bergmeier W, Stefanini L (2013) Platelet ITAM signaling. Curr Opin Hematol 20(5):445–450

    Article  CAS  PubMed  Google Scholar 

  10. Pasquet JM, Quek L, Stevens C, Bobe R, Huber M, Duronio V et al (2000) Phosphatidylinositol 3,4,5-trisphosphate regulates Ca(2+) entry via btk in platelets and megakaryocytes without increasing phospholipase C activity. EMBO J 19(12):2793–2802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Oda A, Ikeda Y, Ochs HD, Druker BJ, Ozaki K, Handa M et al (2000) Rapid tyrosine phosphorylation and activation of Bruton’s tyrosine/Tec kinases in platelets induced by collagen binding or CD32 cross-linking. Blood 95(5):1663–1670

    CAS  PubMed  Google Scholar 

  12. Quek LS, Bolen J, Watson SP (1998) A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 8(20):1137–1140

    Article  CAS  PubMed  Google Scholar 

  13. Atkinson BT, Ellmeier W, Watson SP (2003) Tec regulates platelet activation by GPVI in the absence of Btk. Blood 102(10):3592–3599

    Article  CAS  PubMed  Google Scholar 

  14. Mukhopadhyay S, Ramars AS, Dash D (2001) Bruton’s tyrosine kinase associates with the actin-based cytoskeleton in activated platelets. J Cell Biochem 81(4):659–665

    Article  CAS  PubMed  Google Scholar 

  15. Wonerow P, Pearce AC, Vaux DJ, Watson SP (2003) A critical role for phospholipase Cgamma2 in alphaIIbbeta3-mediated platelet spreading. J Biol Chem 278(39):37520–37529

    Article  CAS  PubMed  Google Scholar 

  16. Gibbins JM (2004) Platelet adhesion signalling and the regulation of thrombus formation. J Cell Sci 117(Pt 16):3415–3425

    Article  CAS  PubMed  Google Scholar 

  17. Iannacone M, Sitia G, Isogawa M, Marchese P, Castro MG, Lowenstein PR et al (2005) Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 11(11):1167–1169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Iannacone M, Sitia G, Isogawa M, Whitmire JK, Marchese P, Chisari FV et al (2008) Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A 105(2):629–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hsu J, Gu Y, Tan SL, Narula S, DeMartino JA, Liao C (2013) Bruton’s Tyrosine Kinase mediates platelet receptor-induced generation of microparticles: a potential mechanism for amplification of inflammatory responses in rheumatoid arthritis synovial joints. Immunol Lett 150(1-2):97–104

    Article  CAS  PubMed  Google Scholar 

  20. Knijff-Dutmer EA, Koerts J, Nieuwland R, Kalsbeek-Batenburg EM, van de Laar MA (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46(6):1498–1503

    Article  CAS  PubMed  Google Scholar 

  21. Robinson D, Chen HC, Li D, Yustein JT, He F, Lin WC et al (1998) Tyrosine kinase expression profiles of chicken erythro-progenitor cells and oncogene-transformed erythroblasts. J Biomed Sci 5(2):93–100

    CAS  PubMed  Google Scholar 

  22. Schmidt U, van den Akker E, Parren-van Amelsvoort M, Litos G, de Bruijn M, Gutierrez L et al (2004) Btk is required for an efficient response to erythropoietin and for SCF-controlled protection against TRAIL in erythroid progenitors. J Exp Med 199(6):785–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. von Lindern M, Schmidt U, Beug H (2004) Control of erythropoiesis by erythropoietin and stem cell factor: a novel role for Bruton’s tyrosine kinase. Cell Cycle 3(7):876–879

    Article  Google Scholar 

  24. Futatani T, Miyawaki T, Tsukada S, Hashimoto S, Kunikata T, Arai S et al (1998) Deficient expression of Bruton’s tyrosine kinase in monocytes from X-linked agammaglobulinemia as evaluated by a flow cytometric analysis and its clinical application to carrier detection. Blood 91(2):595–602

    CAS  PubMed  Google Scholar 

  25. Bao Y, Zheng J, Han C, Jin J, Han H, Liu Y et al (2012) Tyrosine kinase Btk is required for NK cell activation. J Biol Chem 287(28):23769–23778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shinohara M, Koga T, Okamoto K, Sakaguchi S, Arai K, Yasuda H et al (2008) Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132(5):794–806

    Article  CAS  PubMed  Google Scholar 

  27. Lee SH, Kim T, Jeong D, Kim N, Choi Y (2008) The tec family tyrosine kinase Btk regulates RANKL-induced osteoclast maturation. J Biol Chem 283(17):11526–11534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Danks L, Workman S, Webster D, Horwood NJ (2011) Elevated cytokine production restores bone resorption by human Btk-deficient osteoclasts. J Bone Miner Res 26(1):182–192

    Article  CAS  PubMed  Google Scholar 

  29. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E et al (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428(6984):758–763

    Article  CAS  PubMed  Google Scholar 

  30. Mocsai A, Humphrey MB, Van Ziffle JA, Hu Y, Burghardt A, Spusta SC et al (2004) The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci U S A 101(16):6158–6163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lanier LL (2009) DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev 227(1):150–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ormsby T, Schlecker E, Ferdin J, Tessarz AS, Angelisova P, Koprulu AD et al (2011) Btk is a positive regulator in the TREM-1/DAP12 signaling pathway. Blood 118(4):936–945

    Article  CAS  PubMed  Google Scholar 

  33. Chang BY, Huang MM, Francesco M, Chen J, Sokolove J, Magadala P et al (2011) The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 13(4):R115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Raje N, Roodman GD (2011) Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res 17(6):1278–1286

    Article  CAS  PubMed  Google Scholar 

  35. Tai YT, Chang BY, Kong SY, Fulciniti M, Yang G, Calle Y et al (2012) Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 120(9):1877–1887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bam R, Ling W, Khan S, Pennisi A, Venkateshaiah SU, Li X et al (2013) Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease. Am J Hematol 88(6):463–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Uckun FM, Qazi S (2010) Bruton’s tyrosine kinase as a molecular target in treatment of leukemias and lymphomas as well as inflammatory disorders and autoimmunity. Expert Opin Ther Pat 20(11):1457–1470

    Article  CAS  PubMed  Google Scholar 

  38. Rushworth SA, Murray MY, Zaitseva L, Bowles KM, MacEwan DJ (2014) Identification of Bruton’s tyrosine kinase as a therapeutic target in acute myeloid leukemia. Blood 123(8):1229–1238

    Article  CAS  PubMed  Google Scholar 

  39. Tan SL, Liao C, Lucas MC, Stevenson C, DeMartino JA (2013) Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives. Pharmacol Ther 138(2):294–309

    Article  CAS  PubMed  Google Scholar 

  40. Turner H, Kinet JP (1999) Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 402(6760 Suppl):B24–B30

    Article  CAS  PubMed  Google Scholar 

  41. Yamada N, Kawakami Y, Kimura H, Fukamachi H, Baier G, Altman A et al (1993) Structure and expression of novel protein-tyrosine kinases, Emb and Emt, in hematopoietic cells. Biochem Biophys Res Commun 192(1):231–240

    Article  CAS  PubMed  Google Scholar 

  42. Hata D, Kawakami Y, Inagaki N, Lantz CS, Kitamura T, Khan WN et al (1998) Involvement of Bruton’s tyrosine kinase in FcepsilonRI-dependent mast cell degranulation and cytokine production. J Exp Med 187(8):1235–1247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kawakami Y, Kitaura J, Satterthwaite AB, Kato RM, Asai K, Hartman SE et al (2000) Redundant and opposing functions of two tyrosine kinases, Btk and Lyn, in mast cell activation. J Immunol 165(3):1210–1219

    Article  CAS  PubMed  Google Scholar 

  44. Kuehn HS, Swindle EJ, Kim MS, Beaven MA, Metcalfe DD, Gilfillan AM (2008) The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells. J Immunol 181(11):7706–7712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kuehn HS, Radinger M, Brown JM, Ali K, Vanhaesebroeck B, Beaven MA et al (2010) Btk-dependent Rac activation and actin rearrangement following FcepsilonRI aggregation promotes enhanced chemotactic responses of mast cells. J Cell Sci 123(Pt 15):2576–2585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Schmidt U, Abramova A, Boucheron N, Eckelhart E, Schebesta A, Bilic I et al (2009) The protein tyrosine kinase Tec regulates mast cell function. Eur J Immunol 39(11):3228–3238

    Article  CAS  PubMed  Google Scholar 

  47. Iyer AS, Morales JL, Huang W, Ojo F, Ning G, Wills E et al (2011) Absence of Tec family kinases interleukin-2 inducible T cell kinase (Itk) and Bruton’s tyrosine kinase (Btk) severely impairs Fc epsilonRI-dependent mast cell responses. J Biol Chem 286(11):9503–9513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Iwaki S, Tkaczyk C, Satterthwaite AB, Halcomb K, Beaven MA, Metcalfe DD et al (2005) Btk plays a crucial role in the amplification of Fc epsilonRI-mediated mast cell activation by kit. J Biol Chem 280(48):40261–40270

    Article  CAS  PubMed  Google Scholar 

  49. Zorn CN, Keck S, Hendriks RW, Leitges M, Freudenberg MA, Huber M (2009) Bruton’s tyrosine kinase is dispensable for the toll-like receptor-mediated activation of mast cells. Cell Signal 21(1):79–86

    Article  CAS  PubMed  Google Scholar 

  50. Luskova P, Draber P (2004) Modulation of the Fcepsilon receptor I signaling by tyrosine kinase inhibitors: search for therapeutic targets of inflammatory and allergy diseases. Curr Pharm Des 10(15):1727–1737

    Article  CAS  PubMed  Google Scholar 

  51. Gagliardi MC, Finocchi A, Orlandi P, Cursi L, Cancrini C, Moschese V et al (2003) Bruton’s tyrosine kinase defect in dendritic cells from X-linked agammaglobulinaemia patients does not influence their differentiation, maturation and antigen-presenting cell function. Clin Exp Immunol 133(1):115–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Liu Y, Wu Y, Lam KT, Lee PP, Tu W, Lau YL (2012) Dendritic and T cell response to influenza is normal in the patients with X-linked agammaglobulinemia. J Clin Immunol 32(3):421–429

    Article  PubMed Central  PubMed  Google Scholar 

  53. Kawakami Y, Inagaki N, Salek-Ardakani S, Kitaura J, Tanaka H, Nagao K et al (2006) Regulation of dendritic cell maturation and function by Bruton’s tyrosine kinase via IL-10 and Stat3. Proc Natl Acad Sci U S A 103(1):153–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Singhal E, Kumar P, Sen P (2011) A novel role for Bruton’s tyrosine kinase in hepatocyte growth factor-mediated immunoregulation of dendritic cells. J Biol Chem 286(37):32054–32063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kurz SM, Diebold SS, Hieronymus T, Gust TC, Bartunek P, Sachs M et al (2002) The impact of c-met/scatter factor receptor on dendritic cell migration. Eur J Immunol 32(7):1832–1838

    Article  CAS  PubMed  Google Scholar 

  56. Lougaris V, Baronio M, Vitali M, Tampella G, Cattalini M, Tassone L et al (2014) Bruton tyrosine kinase mediates TLR9-dependent human dendritic cell activation. J Allergy Clin Immunol 133(6):1644–50.e4

    Article  CAS  PubMed  Google Scholar 

  57. Rock J, Schneider E, Grun JR, Grutzkau A, Kuppers R, Schmitz J et al (2007) CD303 (BDCA-2) signals in plasmacytoid dendritic cells via a BCR-like signalosome involving Syk, Slp65 and PLCgamma2. Eur J Immunol 37(12):3564–3575

    Article  PubMed  Google Scholar 

  58. Nakayama M, Akiba H, Takeda K, Kojima Y, Hashiguchi M, Azuma M et al (2009) Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113(16):3821–3830

    Article  CAS  PubMed  Google Scholar 

  59. Maurya N, Gujar R, Gupta M, Yadav V, Verma S, Sen P (2014) Immunoregulation of dendritic cells by the receptor T cell Ig and mucin protein-3 via Bruton’s tyrosine kinase and c-Src. J Immunol 193(7):3417–3425

    Article  CAS  PubMed  Google Scholar 

  60. Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C et al (2003) Bruton’s tyrosine kinase is a toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem 278(28):26258–26264

    Article  CAS  PubMed  Google Scholar 

  61. Lopez-Herrera G, Vargas-Hernandez A, Gonzalez-Serrano ME, Berron-Ruiz L, Rodriguez-Alba JC, Espinosa-Rosales F et al (2014) Bruton’s tyrosine kinase--an integral protein of B cell development that also has an essential role in the innate immune system. J Leukoc Biol 95(2):243–250

    Article  PubMed  Google Scholar 

  62. Mansell A, Smith R, Doyle SL, Gray P, Fenner JE, Crack PJ et al (2006) Suppressor of cytokine signaling 1 negatively regulates toll-like receptor signaling by mediating Mal degradation. Nat Immunol 7(2):148–155

    Article  CAS  PubMed  Google Scholar 

  63. Fiedler K, Sindrilaru A, Terszowski G, Kokai E, Feyerabend TB, Bullinger L et al (2011) Neutrophil development and function critically depend on Bruton tyrosine kinase in a mouse model of X-linked agammaglobulinemia. Blood 117(4):1329–1339

    Article  CAS  PubMed  Google Scholar 

  64. Marron TU, Rohr K, Martinez-Gallo M, Yu J, Cunningham-Rundles C (2010) TLR signaling and effector functions are intact in XLA neutrophils. Clin Immunol 137(1):74–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Honda F, Kano H, Kanegane H, Nonoyama S, Kim ES, Lee SK et al (2012) The kinase Btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils. Nat Immunol 13(4):369–378

    Article  CAS  PubMed  Google Scholar 

  66. Krupa A, Fudala R, Florence JM, Tucker T, Allen TC, Standiford TJ et al (2013) Bruton’s tyrosine kinase mediates FcgammaRIIa/toll-like receptor-4 receptor crosstalk in human neutrophils. Am J Respir Cell Mol Biol 48(2):240–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Hartkamp LM, Fine JS, van Es IE, Tang MW, Smith M, Woods J et al (2014) Btk inhibition suppresses agonist-induced human macrophage activation and inflammatory gene expression in RA synovial tissue explants. Ann Rheum Dis

    Google Scholar 

  68. Whang JA, Chang BY (2014) Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Drug Discov Today 19(8):1200–1204

    Article  CAS  PubMed  Google Scholar 

  69. Mueller H, Stadtmann A, Van Aken H, Hirsch E, Wang D, Ley K et al (2010) Tyrosine kinase Btk regulates E-selectin-mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) gamma2 and PI3Kgamma pathways. Blood 115(15):3118–3127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Gilbert C, Levasseur S, Desaulniers P, Dusseault AA, Thibault N, Bourgoin SG et al (2003) Chemotactic factor-induced recruitment and activation of Tec family kinases in human neutrophils. II. Effects of LFM-A13, a specific Btk inhibitor. J Immunol 170(10):5235–5243

    Article  CAS  PubMed  Google Scholar 

  71. Lachance G, Levasseur S, Naccache PH (2002) Chemotactic factor-induced recruitment and activation of Tec family kinases in human neutrophils. Implication of phosphatidynositol 3-kinases. J Biol Chem 277(24):21537–21541

    Article  CAS  PubMed  Google Scholar 

  72. Block H, Zarbock A (2012) The role of the tec kinase Bruton’s tyrosine kinase (Btk) in leukocyte recruitment. Int Rev Immunol 31(2):104–118

    Article  CAS  PubMed  Google Scholar 

  73. Krupa A, Fol M, Rahman M, Stokes KY, Florence JM, Leskov IL et al (2014) Silencing Bruton’s tyrosine kinase in alveolar neutrophils protects mice from LPS/immune complex-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 307(6):L435–L448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Horwood NJ, Mahon T, McDaid JP, Campbell J, Mano H, Brennan FM et al (2003) Bruton’s tyrosine kinase is required for lipopolysaccharide-induced tumor necrosis factor alpha production. J Exp Med 197(12):1603–1611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Gray P, Dunne A, Brikos C, Jefferies CA, Doyle SL, O’Neill LA (2006) MyD88 adapter-like (Mal) is phosphorylated by Bruton’s tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem 281(15):10489–10495

    Article  CAS  PubMed  Google Scholar 

  76. Mangla A, Khare A, Vineeth V, Panday NN, Mukhopadhyay A, Ravindran B et al (2004) Pleiotropic consequences of Bruton tyrosine kinase deficiency in myeloid lineages lead to poor inflammatory responses. Blood 104(4):1191–1197

    Article  CAS  PubMed  Google Scholar 

  77. Mukhopadhyay S, Mohanty M, Mangla A, George A, Bal V, Rath S et al (2002) Macrophage effector functions controlled by Bruton’s tyrosine kinase are more crucial than the cytokine balance of T cell responses for microfilarial clearance. J Immunol 168(6):2914–2921

    Article  CAS  PubMed  Google Scholar 

  78. Perez de Diego R, Lopez-Granados E, Pozo M, Rodriguez C, Sabina P, Ferreira A et al (2006) Bruton’s tyrosine kinase is not essential for LPS-induced activation of human monocytes. J Allergy Clin Immunol 117(6):1462–1469

    Article  CAS  PubMed  Google Scholar 

  79. Jansson L, Holmdahl R (1993) Genes on the X chromosome affect development of collagen-induced arthritis in mice. Clin Exp Immunol 94(3):459–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Schmidt NW, Thieu VT, Mann BA, Ahyi AN, Kaplan MH (2006) Bruton’s tyrosine kinase is required for TLR-induced IL-10 production. J Immunol 177(10):7203–7210

    Article  CAS  PubMed  Google Scholar 

  81. Cheng G, Ye ZS, Baltimore D (1994) Binding of Bruton’s tyrosine kinase to Fyn, Lyn, or Hck through a Src homology 3 domain-mediated interaction. Proc Natl Acad Sci U S A 91(17):8152–8155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Lee HS, Moon C, Lee HW, Park EM, Cho MS, Kang JL (2007) Src tyrosine kinases mediate activations of NF-kappaB and integrin signal during lipopolysaccharide-induced acute lung injury. J Immunol 179(10):7001–7011

    Article  CAS  PubMed  Google Scholar 

  83. Jefferies CA, O’Neill LA (2004) Bruton’s tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? Immunol Lett 92(1-2):15–22

    Article  CAS  PubMed  Google Scholar 

  84. Lee KG, Xu S, Kang ZH, Huo J, Huang M, Liu D et al (2012) Bruton’s tyrosine kinase phosphorylates toll-like receptor 3 to initiate antiviral response. Proc Natl Acad Sci U S A 109(15):5791–5796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Ni Gabhann J, Hams E, Smith S, Wynne C, Byrne JC, Brennan K et al (2014) Btk regulates macrophage polarization in response to lipopolysaccharide. PLoS One 9(1), e85834

    Article  PubMed Central  PubMed  Google Scholar 

  86. Koprulu AD, Kastner R, Wienerroither S, Lassnig C, Putz EM, Majer O et al (2013) The tyrosine kinase Btk regulates the macrophage response to Listeria monocytogenes infection. PLoS One 8(3), e60476

    Article  PubMed Central  PubMed  Google Scholar 

  87. Gonzalez-Serrano ME, Estrada-Garcia I, Mogica-Martinez D, Gonzalez-Garay A, Lopez-Herrera G, Berron-Ruiz L et al (2012) Increased pro-inflammatory cytokine production after lipopolysaccharide stimulation in patients with X-linked agammaglobulinemia. J Clin Immunol 32(5):967–974

    Article  CAS  PubMed  Google Scholar 

  88. Khare A, Viswanathan B, Gund R, Jain N, Ravindran B, George A et al (2011) Role of Bruton’s tyrosine kinase in macrophage apoptosis. Apoptosis Int J Progr Cell Death 16(4):334–346

    Article  CAS  Google Scholar 

  89. Byrne JC, Ni Gabhann J, Stacey KB, Coffey BM, McCarthy E, Thomas W et al (2013) Bruton’s tyrosine kinase is required for apoptotic cell uptake via regulating the phosphorylation and localization of calreticulin. J Immunol 190(10):5207–5215

    Article  CAS  PubMed  Google Scholar 

  90. Fluckiger AC, Li Z, Kato RM, Wahl MI, Ochs HD, Longnecker R et al (1998) Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J 17(7):1973–1985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Instituto de Ciencia y Tecnología del Distrito Federal (ICyTDF) (Grant PICSA12-157) and Consejo Nacional de Ciencia y Tecnología (CONACyT) (Grant Salud-202111 and CB-154472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Santos-Argumedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lopez-Herrera, G., Maravillas-Montero, J.L., Rodríguez-Alba, J.C., Santos-Argumedo, L. (2015). Bruton’s Tyrosine Kinase (BTK) Beyond B Lymphocytes: A Protein Kinase with Relevance in Innate Immunity. In: Plebani, A., Lougaris, V. (eds) Agammaglobulinemia. Rare Diseases of the Immune System, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-22714-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22714-6_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22713-9

  • Online ISBN: 978-3-319-22714-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics