Skip to main content

Abstract

Conventional plant breeding is the development or improvement of cultivars using conservative tools for manipulating plant genome within the natural genetic boundaries of the species. Mendel's work in genetics ushered in the scientific age of plant breeding. The number of genes that control the trait of interest is important to breeders. Qualitative traits (controlled by one or a few genes) are easier to breed than quantitative traits (controlled by numerous genes). General steps in breeding are: objectives, creation/assembly of variability, selection, evaluation and cultivar release. Breeders use methods and techniques that are based on the mode of reproduction of the species self-pollinating, cross-pollinating, or clonally propagated. The general strategy is to breed a cultivar whose genetic purity and productivity can be sustained by its natural mating system. There are six basic types of cultivars: pure line, open-pollinated, hybrid, clonal, apomictic and multilines. The common methods for breeding self-pollinated species include mass selection, pure line selection, pedigree, bulk population, single seed descent, backcrossing, multiline and composite. Methods for breeding cross-pollinated species include mass selection, recurrent selection, family selection and synthetics. Hybrid cultivar breeding exploits the phenomenon of heterosis, and is applicable to both self- and cross-pollinated species. Polyploids have complex genetics. Hybridization of parents is often accompanied by infertility of the hybrid. Mutation breeding may be resorted to when the gene of interest is non-existent in nature and may be induced. Also, sometimes, the desired trait is found in wild relatives of the species and may be introgressed into cultivated species through pre-breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaah G (1992) Practical protein electrophoresis for genetic research. Dioscoredes Press, Portland

    Google Scholar 

  • Acquaah G (2004a) Horticulture: principles and practices, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Acquaah G (2004b) Understanding biotechnology: an integrated and cyber-based approach. Prentice Hall/Pearson, Upper Saddle River

    Google Scholar 

  • Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Agrawal RL (1998) Fundamentals of plant breeding and hybrid seed production. Science Publishers, Inc, Enfield

    Google Scholar 

  • Ahloowalia BS (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Allard RW (1960) Principles of plant breeding. John Wiley and Sons, New York

    Google Scholar 

  • AMCOST (2007) Conservation and sustainable use of biodiversity. http://nepadst.org/platform/biodiv.shtml

  • Andrus C, Seshadri V, Grimball P (1971) Production of seedless watermelons. US Agricultural Research Service, USDA, Washington, DC

    Google Scholar 

  • Anonymous (1991) Plant mutation breeding for crop improvement. In: Proceedings of the FAO/IAEA symposium, Vienna. IAEA, Vienna

    Google Scholar 

  • Bado S, Kozak K, Sekander H et al (2013) Resurgence of X-rays in mutation breeding. In: Plant genetics and breeding technologies; plant diseases and resistance mechanisms: Proceedings, 18–20 Feb 2013, Vienna, Austria. Medimond-Monduzzi Editore International Proceedings Division, Pianoro, 2013, pp 13–16

    Google Scholar 

  • Baezinger PS, Russel WK, Graef GL, Campbell BT (2006) 50 years of crop breeding, genetics, and cytology. Crop Sci 46:2230–2244

    Article  Google Scholar 

  • Barton JH (1982) The international breeder’s rights system and crop plant innovation. Science 216:1071–1075

    Article  CAS  PubMed  Google Scholar 

  • Bauman F, Crane PL (1992) Hybrid corn – history, development and selection considerations, National corn handbook. Purdue University, West Lafayette

    Google Scholar 

  • Bernardo R (2010) Breeding for quantitative traits in plants, 2nd edn. Stemma Press, Woodbury

    Google Scholar 

  • Betrán FJ, Hallauer AR (1996) Hybrid improvement after reciprocal recurrent selection in BSSS and BSCB1 maize populations. Maydica 41:25–33

    Google Scholar 

  • Betrand C, Collard Y, Mackill DJ (2008) Marker-assisted selection: an approach for precision breeding in the 21st century. Philos Trans Roy Soc Lond Ser B Biol Sci 363:557–572

    Article  Google Scholar 

  • Borojevic S (1990) Principles and methods of plant breeding. Elsevier, Amsterdam

    Google Scholar 

  • Bridgen MP (1994) A review of plant embryo culture. Hort Sci 29:1243–1246

    Google Scholar 

  • Briggs FN, Knowles PF (1967) Introduction to plant breeding. Reinhold Publishing Corporation, New York

    Google Scholar 

  • Broertjes C, van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier, Amsterdam

    Google Scholar 

  • Brown J, Caligari P (2008) An introduction to plant breeding. Blackwell Publishing, Ltd, Oxford/Ames

    Book  Google Scholar 

  • Burton JW, Brim CA (1981) Recurrent selection in soybeans III. Selection for increased percent oil in seeds. Crop Sci 21:31–34

    Article  Google Scholar 

  • Chahal GS, Gosal SS (2000) Principles and procedures of plant breeding: biotechnological and conventional approaches. CRC Press, New York

    Google Scholar 

  • Chahal GS, Gosal SS (2002) Principles and procedures of plant breeding. Alpha Science International

    Google Scholar 

  • Cisneros A, Tel-zur N (2010) Embryo rescue and plant regeneration following interspecific crosses in the genus Hylocereus (Cactaceae). Euphytica 174:73–82

    Article  Google Scholar 

  • Collard BCY, Jahurfer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci, mapping, and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J 41:360–367

    Article  Google Scholar 

  • Coors IG, Pandey S (eds) (1997) In: Proceedings of the international symposium on the exploitation of heterosis in crops. CIMMIT, Mexico City, 17–22 Aug 1997; ASA, Madison

    Google Scholar 

  • Crow JF (1998) 90 years ago: the beginning of hybrid maize. Genetics 148:923–928

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  • CzyczyÅ‚o-Mysza I, MarciÅ„ska I, Jankowicz-CieÅ›lak J, Dubert F (2013) The effect of ionizing radiation on vernalization, growth and development of winter wheat. Acta Biol Cracov Ser Bot 55(1):1–6

    Google Scholar 

  • Dudley JW, Lambert RJ (1992) Ninety generations of selection for oil and protein in maize. Maydica 37:81–87

    Google Scholar 

  • Dudley JW, Saghai-Maroof MA, Rufener GK (1991) Molecular markers and grouping of parents in maize breeding programs. Crop Sci 31:718–723

    Article  Google Scholar 

  • Eberhart SA, Gardner CO (1966) A general model for genetic effects. Biometrics 22(4):864–881

    Article  Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics. Longman Group, Ltd, New York

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetic, 4th edn. Longman, Harlow

    Google Scholar 

  • Fehr WR (1987a) Principles of cultivar development, vol 1, Theory and technique. Macmillan, New York

    Google Scholar 

  • Fehr WR (1987b) Principles of cultivar development, vol 2, Crops species. Macmillan, New York

    Google Scholar 

  • Feng L, Burton JW, Carter TE Jr, Pantalone VR (2004) Recurrent half-sib selection with testcross evaluation for increased oil content in soybean. Crop Sci 44:63–69

    Article  Google Scholar 

  • Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–499

    Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  • Griffing JB (1956) Concept of general and specific combining ability in relation to diallel systems. Aust J Biol Sci 9:463–493

    Google Scholar 

  • Griffiths JF (1999) An introduction to genetic analysis. WH Freeman Ltd, San Francisco

    Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:e245

    Article  PubMed Central  PubMed  Google Scholar 

  • Hallauer AJ (1967) Development of single-cross hybrids from two-eared maize populations. Crop Sci 7:192–195

    Article  Google Scholar 

  • Hanna WW, Bashaw EC (1987) Apomixis: its identification and use in plant breeding. Crop Sci 27:1136–1139

    Article  Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Harlan JR (1976) Genetic resources in wild relatives of crops. Crop Sci 16:329–333

    Article  Google Scholar 

  • Harlan JR, de Wet JMT (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Helgeson JP, Hunt GJ, Haberlach GT, Austin S (1986) Somatic hybrids between Solanum brevidens and Solanum tuberosum: expression of a late blight resistance gene and potato leaf roll resistance. Plant Cell Rep 5(3):212–214

    Article  CAS  PubMed  Google Scholar 

  • Holland JB (2001) Epistasis and plant breeding. Plant Breed Rev 21:27–92

    CAS  Google Scholar 

  • Jain HK (1982) Plant breeders’ rights and genetic resources. Indian J Plant Breed 42:121–128

    Google Scholar 

  • Jain HK, Kharkwal MC (2004) Plant breeding: Mendelian to molecular approaches. Springer, Dordrecht

    Book  Google Scholar 

  • Jain SH, Till BJ, Suprasanna P, Roux N (2011) Mutations and cultivar development in banana. In: Banana breeding: progress and challenges. CRC Press, pp 203–218

    Google Scholar 

  • Jakowitsch J, Mette MF, van der Winden J et al (1999) Integrated pararetroviral sequences define a unique class of dispersed repetitive DNA in plants. Proc Natl Acad Sci 96(23):13241–13246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen NF (1978) Composite breeding methods and the DSM system in cereals. Crop Sci 18:622–626

    Article  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  • Katepa-Mupondwa FM, Christie BR, Michaels TE (2002) An improved breeding strategy for autotetraploid alfalfa (Medicago sativa L.). Euphytica 123:139–146

    Article  Google Scholar 

  • Kearsey MJ, Pooni HS (1998) The genetical analysis of quantitative traits. Stanley Thornes Publishers, Cheltenham

    Google Scholar 

  • Kempe K, Gils M (2011) Pollination control technologies for hybrid breeding. Molec Breed 27:417–437

    Article  Google Scholar 

  • Lamkey K, Edwards J (1999) Quantitative genetics of heterosis. The genetics and exploitation of heterosis in crops. pp 31–48

    Google Scholar 

  • Liu W, Zheng MY, Polle EA, Konzak CF (2002) Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci 42:686–692

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  CAS  PubMed  Google Scholar 

  • Maluszynski MK, Nichterlein K, van Zanten L, Ahloowalia BS (2000) Officially released mutant varieties – the FAO/IAEA database. Mutat Breed Rev 12:1–84

    Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Kluwer Academic Publ, Dordrecht/Boston/London

    Book  Google Scholar 

  • Matijevic M, Bado S, Lagoda PJL, Forster BP (2013) Impact of induced mutations in plant breeding. In: Plant genetics and breeding technologies; plant diseases and resistance mechanisms: Proceedings, 18–20 Feb 2013, Vienna, Austria. Medimond-Monduzzi Editore international Proceedings Division, Pianoro, 2013, pp 45–47

    Google Scholar 

  • Maxted N (2013) In situ and ex situ conservation. Elsevier, Amsterdam

    Book  Google Scholar 

  • Mehlo L, Mbambo Z, Bado S et al (2013) Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum. Mutat Res 749:66–72

    Article  CAS  PubMed  Google Scholar 

  • Mehra KL, Arora RK (1982) Plant genetic resources of India, their diversity and conservation, NBPGR scientific monograph 4:60. National Bureau of Plant Genetic Resources, New Delhi

    Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (eds) Concept and breeding of heterosis in crop plants, SP. Pub. No. 25. CCSSA, Madison, pp 29–44

    Google Scholar 

  • Mengesha MH (1984) International germplasm collection, conservation, and exchange at ICRISAT. In: Conservation of crop germplasm-international perspective. Crop Science Society of America, Madison, pp 47–54

    Google Scholar 

  • Menz MA, Hallauer AR (1997) Reciprocal recurrent selection of two tropical corn populations adapted to Iowa. Maydica 42(3):239–246

    Google Scholar 

  • Micke A (1992) 50 years induced mutations for improving disease resistance of crop plants. Mutat Breed Newsl 39:2–4

    Google Scholar 

  • Moore G, Tymowski W (2005) Explanatory guide to the international treaty on plant genetic resources for food and agriculture. IUCN, Gland/Cambridge

    Book  Google Scholar 

  • Nassimi AW, Raziuddin S, Ali G et al (2006) Combining ability analysis for maturity and other traits in rapeseed (Brassica napus L.). Agron J 5(3):523–526

    Article  Google Scholar 

  • Norskog C (1995) Hybrid seed corn enterprises. A brief history. Curtis Norskog, Willmar

    Google Scholar 

  • Paterniani E, Vencovsky R (1977) Reciprocal recurrent selection in maize (Zea mays L.) based on testcrosses of half-sib families. Maydica 22:141–152

    Google Scholar 

  • Paterniani E, Vencovsky R (1978) Reciprocal recurrent selection based on half-sib progenies and prolific plants in maize (Zea mays L.). Maydica 23:209–219

    Google Scholar 

  • Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L). Theor Appl Genet 107:340–352

    Article  CAS  PubMed  Google Scholar 

  • Poehlman JM, Sleper DA (1995) Breeding field crops. Iowa State Univ Press, Iowa

    Google Scholar 

  • Sage TL, Strumas F, Cole WW, Barret S (2010) Embryo rescue and plant regeneration following interspecific crosses in the genus Hylocereus (Cactaceae). Euphytica 174:73–82

    Article  Google Scholar 

  • Savidan YH (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86

    CAS  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CABI International, Wallingford/Cambridge

    Book  Google Scholar 

  • Sleper DA, Poehlman JM (1999) Breeding field crops. Wiley and Sons, New Jersey

    Google Scholar 

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize; How do two halves make more than a whole? Genome Res 17(3):264–275

    Article  CAS  PubMed  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW et al (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genet 132:823–839

    CAS  Google Scholar 

  • Tigchelaat EC, Casali VWD (1976) Single seed descent: applications and merits in breeding self-pollinated crops. Acta Hort 63:85–90

    Article  Google Scholar 

  • Upadhyaya HD, Laxmipathi Gowda CL (2009) Managing and enhancing the use of germplasm – strategies and methodologies, vol 10, Technical manual. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 236

    Google Scholar 

  • Winzeler H, Schmid J, Fried PM (1987) Field performance of androgenetic doubled haploid spring wheat line in comparison with line selected by the pedigree system. Plant Breed 99:41–48

    Article  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  CAS  PubMed  Google Scholar 

  • Zohary D, Hopf M (1988) Domestication of plants in the old world. Clarendon, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Acquaah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Acquaah, G. (2015). Conventional Plant Breeding Principles and Techniques. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_5

Download citation

Publish with us

Policies and ethics