Skip to main content

Current Status of Bacillus thuringiensis: Insecticidal Crystal Proteins and Transgenic Crops

  • Chapter
Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits

Abstract

Bacillus thuringiensis (Bt) is used to control agriculturally-important pests. It is a Gram positive spore-forming bacterium which produces parasporal proteinaceous inclusions during the sporulation phase. These crystalline parasporal inclusions are toxic to a wide spectrum of insects including the orders Lepidoptera, Coleopteran, Diptera, etc. The Bt insecticide proteins are toxic only after ingestion by the susceptible insects. The main steps involved when the Cry protein is ingested by the insect is comprised of solubilization of the protoxin, its enzymatic activation by terminal cleavage, receptor binding in brush border membrane of the midgut, pore formation, consequent disruption of ionic potential and destruction of the epithelial membrane leading to cell death. The first discovery of Bt was in 1901 when Ishiwata discovered a bacterium in Japan and in 1915, Berliner in Germany renamed it as Bacillus thuringiensis. Following a brief introduction, this chapter addresses the classification, the general structure of Cry toxin, its mode of action, strategies to improve the insecticidal activity of Cry proteins, transgenic plants developed using Bt genes, resistance to Bt toxins and resistance management, and an overall brief account of Bt and its insecticidal proteins, from 1901 to the present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah M, Alzate O, Mohammad M et al (2003) Introduction of culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Appl Environ Microbiol 69:5343–5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams L, Visick J, Whiteley H (1989) A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol 171:521–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adang M, Firoozabady E, Klein J et al (1987) Expression of a Bacillus thuringiensis insecticidal crystal protein gene in tobacco plants. In: Arntzen CJ, Ryan C (eds) Molecular strategies for crop protection. Proceedings, UCLA Symposia on Molecular and Cellular Biology, new series. Liss, New York, pp 345–353

    Google Scholar 

  • Adang M, Brody M, Cardineau G et al (1993) The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol Biol 21:1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Agaisse H, Lereclus D (1994a) Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Mol Microbiol 13:97–107

    Article  CAS  PubMed  Google Scholar 

  • Agaisse H, Lereclus D (1994b) Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. J Bacteriol 176:4734–4741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmedani MS, Haque MI, Afzal SN et al (2008) Scope of commercial formulations of Bacillus thuringiensis Berliner as an alternative to methyl bromide against Tribolium castaneum adults. Pak J Bot 40:2149–2156

    Google Scholar 

  • Akiba T, Abe Y, Kitada S et al (2009) Crystal structure of the Parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells. J Mol Biol 386:121–133

    Article  CAS  PubMed  Google Scholar 

  • Alam M, Datta K, Abrigo E et al (1999) Transgenic insect-resistant maintainer line (IR68899B) for improvement of hybrid rice. Plant Cell Rep 18:572–575

    Article  CAS  Google Scholar 

  • Ali S, Zafar Y, Ali GM, Nazir F (2010) Bacillus thuringiensis and its application in agriculture. Afr J Biotechnol 9:2022–2031

    CAS  Google Scholar 

  • Anilkumar K, Rodrigo-Simon A, Ferre J et al (2008) Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microbiol 74:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arencibia A, Vazquez RI, Prieto D et al (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed 3:247–255

    Article  Google Scholar 

  • Artim L (2003) Application for determination of non–regulated status for lepidopteran insect protected VIP3A cotton transformation event COT102. Submitted by Syngenta Seeds, Inc., Research Triangle Park, NC 27709 to the Biotechnology Regulatory Services, Riverdale, MD

    Google Scholar 

  • Attathom T, Chongrattanameteekul W, Chanpaisang J, Siriyan R (1995) Morphological diversity and toxicity of δ-endotoxin produced by various strains of Bacillus thuringiensis. Bull Entomol Res 85:167–173

    Article  CAS  Google Scholar 

  • Barboza-Corona J, Nieto-Mazzocco E, Velazquez-Robledo R et al (2003) Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis. Appl Environ Microbiol 69:1023–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraclough E, Burgess E, Philip B et al (2009) Tritrophic impacts of Bt-expressing transgenic pine on the parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) via its host Pseudocoremia suavis (Lepidoptera: Geometridae). Biol Control 49:192–199

    Article  Google Scholar 

  • Barton K, Whiteley H, Yang N (1987) Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tobacum provides resistance to lepidopteran insects. Plant Phys 8:1103–1111

    Article  Google Scholar 

  • Bashir K, Husnain T, Fatima T et al (2004) Field evaluation and risk assessment of transgenic indica basmati rice. Mol Breed 13:301–312

    Article  CAS  Google Scholar 

  • Baxter S, Zhao J, Shelton A et al (2008) Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella. Insect Biochem Mol Biol 38:125–135

    Article  CAS  PubMed  Google Scholar 

  • Ben-Dov E, Zaritsky A, Dahan E et al (1997) Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl Environ Microbiol 63:4883–4890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berliner E (1915) Ueber die schlaffsucht der Ephestia kuhniella und Bac. thuringiensis n. sp. Z Angew Entomol 2:21–56

    Google Scholar 

  • Bernhard K, Jarrett P, Meadows M et al (1997) Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization and activity against insect pests. J Invertebr Pathol 70:59–68

    Article  Google Scholar 

  • Beron C, Curatti L, Salerno G (2005) New strategy for identification of novel Cry-type genes from Bacillus thuringiensis strains. Appl Environ Microbiol 71:761–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry C, O’Neil S, Ben-Dov E et al (2002) Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 68:5082–5095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla R, Dalal M, Panguluri S et al (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 24:467–472

    Article  CAS  Google Scholar 

  • Bhattacharya R, Viswakarma N, Bhat S et al (2002) Development of insect-resistant transgenic cabbage plants expressing a synthetic cryIA (b) gene from Bacillus thuringiensis. Curr Sci 83:146–150

    CAS  Google Scholar 

  • Boonserm P, Mo M, Angsuthanasombat CH, Lescar J (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-Å resolution. J Bacteriol 188:3391–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bora R, Murty M, Shenbagarathai R, Sekar V (1994) Introduction of a lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere. Appl Environ Microbiol 60:214–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch D, Visser B, Stiekema W (1994) Analysis of non–active engineered Bacillus thuringiensis crystal proteins. FEMS Microbiol Lett 118:129–133

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Soberón M (2008) How to cope with insect resistance to Bt toxins? Trends Biotechnol 26(10):573–579

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Sarabia S, Lopez L et al (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo A, Soberón M, Gill S (2005) Bacillus thuringiensis mechanisms and use. Compr Mol Insect Sci 6:175–206

    Article  CAS  Google Scholar 

  • Bravo A, Gill S, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bříza J, Pavingerová D, Vlasák J, Niedermeierová H (2013) Norway spruce (Picea abies) genetic transformation with modified Cry3A gene of Bacillus thuringiensis. Acta Biochim Pol 60:395–400

    PubMed  Google Scholar 

  • Brown K, Whiteley H (1990) Isolation of the second Bacillus thuringiensis RNA polymerase that transcribes from a crystal protein gene promoter. J Bacteriol 172:6682–6688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buschman L, Sloderbeck P, Guo Y et al (1998) Corn borer resistance and grain yield of Bt and non-Bt corn hybrids at Garden city, Kansas, in 1997. In: Progress Report 814, Agr Exp Stat Co-op Ext Serv, Kansas State University, pp 34–38

    Google Scholar 

  • Butko P (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol 69:2415–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabib E (1987) The synthesis and degradation of chitin. Adv Enzymol Relat Areas Mol Biol 59:59–101

    CAS  PubMed  Google Scholar 

  • Cahan R, Friman H, Nitzan Y (2008) Antibacterial activity of Cyt1Aa from Bacillus thuringiensis subsp. israelensis. Microbiology 154:3529–3536

    Article  CAS  PubMed  Google Scholar 

  • Caramori T, Albertini A, Galizzi A (1991) In vivo generation of hybrids between two Bacillus thuringiensis insect-toxin-encoding genes. Gene 98:37–44

    Article  CAS  PubMed  Google Scholar 

  • Carlton B (1996) Development and commercialization of new and improved biopesticides. Ann N Y Acad Sci Eng Plants Commer Prod Appl 792:154–163

    Article  Google Scholar 

  • Carozzi NB, Kramer VC, Warren GW et al (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl Environ Microbiol 57:3057–3061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty R, Viswakarma N, Bhat S et al (2002) Agrobacterium–mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27:495–502

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Choi J, Jin B et al (2003) An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J Invertebr Pathol 84:30–37

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Hua G, Jurat-Fuentes J et al (2007) Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. Proc Natl Acad Sci U S A 104:13901–13906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cry1A (b) and cry1A (c) genes are highly toxic to yellow stem borer and striped stem borer. Proc Natl Acad Sci U S A 95:2767–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilcott C, Wigley P (1994) Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. J Invertebr Pathol 61:244–247

    Article  Google Scholar 

  • Cohen M, Gould F, Bentur J (2000) Bt rice: practical steps to sustainable use. Int Rice Res Notes Philipp 25:4–10

    Google Scholar 

  • Craveiro K, Júnior J, Silva M et al (2010) Variant Cry1Ia toxins generated by DNA shuffling are active against sugarcane giant borer. J Bacteriol 145:215–221

    CAS  Google Scholar 

  • Crickmore N, Ellar D (1992) Involvement of a possible chaperonin in the efficient expression of a cloned CryllA – endotoxin gene in Bacillus thuringiensis. Mol Biol 6:1533–1537

    CAS  Google Scholar 

  • Crickmore N, Zeigler D, Feitelson J et al (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Costa Lima PS, Lemos MVF, Lemos EGM, Alves LML (2000) Transference of a crystal protein gene from B. thuringiensis and its expression in Bradyrhizobium sp. cells. World J Microbiol Biotechnol 16:361–365

    Article  Google Scholar 

  • Datta K, Vasquez A, Tu J et al (1998) Constitutive and tissue-specific differential expression of the cryIA (b) gene in transgenic rice plants conferring resistance to rice insect pest. Theor Appl Genet 97:20–30

    Article  CAS  Google Scholar 

  • de Barjac H, Bonnefoi A (1962) Essai de classification biochimique et sérologique de 24 souches de Bacillus du type B. thuringiensis. BioControl 7:5–31

    Google Scholar 

  • de Barjac H, Frachon E (1990) Classification of Bacillus thuringiensis strains. BioControl 35:233–240

    Google Scholar 

  • de La Fuente-Salcido N, Guadalupe Alanís-Guzmán M, Bideshi DK et al (2008) Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 190:633–640

    Article  PubMed  CAS  Google Scholar 

  • de Maagd R, Kwa M, Van der Klei H et al (1996) Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA (b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol 62:1537–1543

    PubMed  PubMed Central  Google Scholar 

  • de Maagd R, Bosch D, Stiekema W (1999) Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends Plant Sci 4:9–13

    Article  PubMed  Google Scholar 

  • de Maagd R, Weemen-Hendriks M, Stiekema W, Bosch D (2000) Bacillus thuringiensis delta–endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl Environ Microbiol 66:1559–1563

    Article  PubMed  PubMed Central  Google Scholar 

  • de Maagd R, Bravo A, Berry C et al (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Ann Rev Genet 37:409–433

    Article  PubMed  CAS  Google Scholar 

  • Delannay X, LaVallee BJ, Proksch RK et al (1989) Field performance of transgenic tomato plants expressing Bacillus thuringiensis var. kurstaki insect control protein. Biotechnology 7:265–1269

    Google Scholar 

  • Deng C, Peng Q, Song F, Lereclus D (2014) Regulation of cry gene expression in Bacillus thuringiensis. Toxins 6:2194–2209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dervyn E, Poncet S, Klier A, Rapoport G (1995) Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis. J Bacteriol 177:2283–2291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Luo Z, Xia L et al (2008) Improving the insecticidal activity by expression of a recombinant cry 1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr Microbiol 56:442–446

    Article  CAS  PubMed  Google Scholar 

  • Doss V, Anup Kumar K, Jayakumar R, Sekar V (2002) Cloning and expression of the vegetative insecticidal protein (vip3V) gene of Bacillus thuringiensis in Escherichia coli. Protein Expr Purif 26:82–88

    Article  CAS  PubMed  Google Scholar 

  • Douches DS, Pett W, Santos F et al (2004) Field and storage testing Bt potatoes for resistance to potato tuberworm (Lepidoptera: Gelichiidae). J Econ Entomol 97:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Douville M, Gagné F, André C, Blaise C (2009) Occurrence of the transgenic corn cry1Ab gene in freshwater mussels (Elliptio complanata) near corn fields: evidence of exposure by bacterial ingestion. Ecotoxicol Environ Saf 72:17–25

    Article  CAS  PubMed  Google Scholar 

  • Driss F, Rouis S, Azzouz H et al (2011) Integration of a recombinant chitinase into Bacillus thuringiensis parasporal insecticidal crystal. Curr Microbiol 62:281–288

    Article  CAS  PubMed  Google Scholar 

  • Du C, Martin P, Nickerson K (1994) Comparison of disulfide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. Appl Environ Microbiol 60:3847–3853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duck NB, Evola SV (1997) Use of transgenes to increase host plant resistance to insects: opportunities and challenges. In: Carozzi NB, Koziel MG (eds) Advances in insect control: the role of transgenic plants. Taylor & Francis, London, pp 1–20

    Google Scholar 

  • Ebora RV, Ebora MM, Sticklen MB (1994) Transgenic potato expressing the Bacillus thuringiensis cryIA(c) gene effects on the survival and food consumption of Phthorimaea operculella (Lepidoptera: Gelechiidae) and Ostrinia nubilalis (Lepidoptera: Noctuidae). J Econ Entomol 87:1122–1127

    Article  Google Scholar 

  • El-Sadawy H, El-Hag H, Georgy J et al (2008) In vitro activity of Bacillus thuringiensis (H14) 43 kDa crystal protein against Leishmania major. Am Eurasian J Agric Environ Sci 3:583–589

    Google Scholar 

  • Estruch J, Warren G, Mullins M et al (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93:5389–5393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federici B (1999) Naturally occurring baculoviruses for insect pest control. Methods Biotechnol 5:301–320

    Google Scholar 

  • Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Ann Rev Entomol 47:501–533

    Article  Google Scholar 

  • Fischhoff D, Bowdish K, Perlak F et al (1987) Insect tolerant transgenic tomato plants. Nat Biotechnol 5:807–813

    Article  CAS  Google Scholar 

  • Forcada C, Alcácer E, Garcerá M, Martínez R (1996) Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Arch Insect Biochem Physiol 31:257–272

    Article  CAS  Google Scholar 

  • Forsyth G, Logan N (2000) Isolation of Bacillus thuringiensis from Northern Victoria land, Antarctica. Lett Appl Microbiol 30:263–266

    Article  CAS  PubMed  Google Scholar 

  • Gahan L, Gould F, Heckel D (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293:857–860

    Article  CAS  PubMed  Google Scholar 

  • Gahan LJ, Pauchet Y, Vogel H, Heckel DG (2010) An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet 6:e1001248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Cao Y, Xia L et al (2013) Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21. BMC Genomics 14:738 (1–12)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatehouse A, Ferry N, Raemaekers R (2002) The case of the monarch butterfly: a verdict is returned. Trends Genet 18:249–251

    Article  CAS  PubMed  Google Scholar 

  • Ge A, Rivers D, Milne R, Dean D (1991) Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA (c). J Biol Chem 266:17954–17958

    CAS  PubMed  Google Scholar 

  • Georghiou G, Wirth M (1997) Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol 63:1095–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill S, Singh G, Hornung J (1987) Cell membrane interaction of Bacillus thuringiensis subsp. israelensis cytolytic toxins. Infect Immun 55:1300–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill S, Cowles E, Pietrantonio P (1992) The mode of action of Bacillus thuringiensis endotoxins. Ann Rev Entomol 37:615–634

    Article  CAS  Google Scholar 

  • González J, Dulmage HT, Carlton BC (1981) Correlation between specific plasmids and δ-endotoxin production in Bacillus thuringiensis. Plasmid 5:351–365

    Google Scholar 

  • Gough J, Akhurst R, Ellar D et al (2002) New isolates of Bacillus thuringiensis for control of livestock ectoparasites. Biol Control 23:179–189

    Article  CAS  Google Scholar 

  • Gould F, Anderson A, Jones A et al (1997) Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc Natl Acad Sci U S A 94:3519–3523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffitts J, Haslam S, Yang T et al (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307:922–925

    Article  CAS  PubMed  Google Scholar 

  • Gu K, Mao H, Yin Z (2014) Production of marker-free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis δ-endotoxin Cry1Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus). Biotechnol Biofuels 7:68(1–9)

    Article  CAS  Google Scholar 

  • Gujar G, Kumari A, Kalia V, Chandrashekar K (2000) Spatial and temporal variation in susceptibility of the American boll worm, Helicoverpa armigera (Hubner) to Bacillus thuringiensis var. kurstaki in India. Curr Sci 78:995–1001

    Google Scholar 

  • Gunning RV, Dang HT, Kemp FC et al (2005) New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol 71:2558–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurkan C, Ellar D (2003) Expression in Pichia pastoris and purification of a membrane-acting immunotoxin based on a synthetic gene coding for the Bacillus thuringiensis Cyt2Aa1 toxin. Protein Exp Purif 29:103–116

    Article  CAS  Google Scholar 

  • Halfhill MD, Richards HA, Mabon SA, Stewart CN Jr (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor Appl Genet 103:659–667

    Article  CAS  Google Scholar 

  • Héma O, Somé HN, Traoré Q et al (2009) Efficacy of transgenic cotton plant containing the Cry1Ac and Cry2Ab genes of Bacillus thuringiensis against Helicoverpa armigera and Syllepte derogate in cotton cultivation in Burkina Faso. Crop Prot 28:205–214

    Article  CAS  Google Scholar 

  • Hernández-Rodríguez C, Boets A, Van Rie J, Ferré J (2009) Screening and identification of vip genes in Bacillus thuringiensis strains. J Appl Microbiol 107:219–225

    Article  PubMed  CAS  Google Scholar 

  • Herrera G, Snyman S, Thomson J (1997) Construction of a bioinsecticidal strain of Pseudomonas fluorescens active against sugarcane borer. In: Insect resistant maize, recent advances and utilization. CIMMYT, Mexico, DF, Mexico, pp 159–162

    Google Scholar 

  • Herrero S, Gechev T, Bakker P et al (2005) Bacillus thuringiensis cry1Ca resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics 6:96 (1–11)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofte H, Whiteley H (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Mol Biol Rev 53:242–255

    CAS  Google Scholar 

  • Huang F, Leonard B, Andow D (2007) Sugarcane borer (Lepidoptera: Crambidae) resistance to transgenic Bacillus thuringiensis maize. J Econ Entomol 100:164–171

    Article  PubMed  Google Scholar 

  • Huang J, Mi J, Chen R et al (2014) Effect of farm management practices in the Bt toxin production by Bt cotton: evidence from farm fields in China. Transgenic Res 23:397–406

    Article  CAS  PubMed  Google Scholar 

  • Iannacone R, Grieco PD, Cellini F (1997) Specific sequence modifications of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol Biol 34:485–496

    Article  CAS  PubMed  Google Scholar 

  • Ibargutxi M, Estela A, Ferre J, Caballero P (2006) Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Appl Environ Microbiol 72(1):437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimatsu T, Mizuki E, Nishimura K et al (2000) Occurrence of Bacillus thuringiensis in fresh waters of Japan. Curr Microbiol 40:217–220

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata S (1901) On a kind of severe flacherie (sotto disease). Dainihon Sanshi Kaiho 114:1–5

    Google Scholar 

  • Jain D, Udayasuriyan V, Arulselvi P et al (2006) Cloning, characterization, and expression of a new cry2Ab gene from Bacillus thuringiensis strain 14-1. Appl Biochem Biotechnol 128:185–194

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Kachhwaha S, Shrivastava G, Kotahri SL (2009) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Biol 48:1152–1156

    Google Scholar 

  • Jain D, Kachhwaha S, Jain R, Kothari S (2012) PCR based detection of cry genes in indigenous strains of Bacillus thuringiensis isolated from the soils of Rajasthan. Indian J Biotechnol 11:491–494

    CAS  Google Scholar 

  • James C (2013) Global view of commercialized transgenic crops: 2013. ISAAA (International Service for Acquisition of Agri-biotech Applications), Brief 46 Preview, ISAAA, Ithaca

    Google Scholar 

  • Jamoussi K, Sellami S, Abdelkefi-Mesrati L et al (2009) Heterologous expression of Bacillus thuringiensis vegetative insecticidal protein encoding gene vip3LB in Photorhabdus temperata strain K122 and oral toxicity against the Lepidoptera Ephestia kuehniella and Spodoptera littoralis. Mol Biotechnol 43:97–103

    Article  CAS  PubMed  Google Scholar 

  • Janmaat A, Myers J (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc R Soc Lond Ser B: Biol Sci 270:2263–2270

    Article  Google Scholar 

  • Jenkins JN, McCarty JC, Buehler RE et al (1997) Resistance of cotton with delta-endotoxin genes from Bacillus thuringiensis var. kurstaki on selected Lepidopteran insects. Agron J 89:768–780

    Article  Google Scholar 

  • Johnson C, Bishop A (1996) A technique for the effective enrichment and isolation of Bacillus thuringiensis. FEMS Microbiol Lett 142:173–177

    Article  CAS  Google Scholar 

  • Jouanin L, Bonadé-Bottino M, Girard C et al (1998) Transgenic plants for insect resistance. Plant Sci 13:1–11

    Article  Google Scholar 

  • Juarez-Perez VM, Ferrandis MD, Frutos R (1997) PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl Environ Microbiol 63:2997–3002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jurat-Fuentes J, Adang M (2004) Characterization of a Cry1Ac receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur J Biochem 271:3127–3135

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Gahan LJ, Gould FL et al (2004) The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry 43:14299–14305

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Basu D, Das S et al (1997) Expression of cryIA(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of podborer (Heliothis armigera) larvae. Transgenic Res 6:177–185

    Article  CAS  Google Scholar 

  • Koller C, Bauer L, Hollingworth R (1992) Characterization of the pH-mediated solubility of Bacillus thuringiensis var. san diego native δ-endotoxin crystals. Biochem Biophys Res Commun 184:692–699

    Article  CAS  PubMed  Google Scholar 

  • Komano T, Takabe S, Sakai H (2000) Transcription of the insecticidal crystal protein genes of Bacillus thuringiensis. Biotechnol Ann Rev 5:131–154

    Article  CAS  Google Scholar 

  • Koziel M, Beland G, Bowman C et al (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat Biotechnol 11:194–200

    Article  CAS  Google Scholar 

  • Kranthi K, Kranthi S, Ali S, Banerjee S (2000) Resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in a laboratory selected strain of Helicoverpa armigera (Hubner). Curr Sci 78:1001–1003

    CAS  Google Scholar 

  • Krieg A, Huger A, Langenbruch G, Schnetter W (1983) Bacillus thuringiensis var. tenebrionis, a new pathotype effective against larvae of Coleoptera. Z Angew Entomol 96:500–508

    Article  Google Scholar 

  • Kumar P (2004) Cautious use of Bt genes in transgenic crops. Curr Sci 86:632–633

    Google Scholar 

  • Kumar P, Sharma R, Malik V (1996) The insecticidal proteins of Bacillus thuringiensis. Adv Appl Microbiol 42:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Mandaokar A, Sreenivasu K et al (1998) Insect–resistant transgenic brinjal plants. Mol Breed 4:33–37

    Article  CAS  Google Scholar 

  • Kumar M, Chimote V, Singh R et al (2010) Development of Bt transgenic potatoes for effective control of potato tuber moth by using cry1Ab gene regulated by GBSS promoter. Crop Prot 29:121–127

    Article  CAS  Google Scholar 

  • Kumar S, Lakshmi Prasanna PA, Wankhade S (2011) Potential benefits of Bt brinjal in India – an economic assessment. Agric Econ Res Rev 24:83–90

    Google Scholar 

  • Kuo WS, Chak KF (1996) Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl Environ Microbiol 62:1369–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz RW, McCaffery A, O’Reilly D (2007) Insect resistance management for Syngenta’s VipCot(TM) transgenic cotton. J Invertebr Pathol 9:227–230

    Article  Google Scholar 

  • Kuvshinov V, Koivu K, Kanerva A, Pehu E (2001) Transgenic crop plants expressing synthetic cry9Aa gene are protected against insect damage. Plant Sci 160:341–353

    Article  CAS  PubMed  Google Scholar 

  • Lampel J, Canter G, Dimock M et al (1994) Integrative cloning, expression, and stability of the cryIA (c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 60:501–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landen R, Bryne M, Abdel-Hameed A (1994) Distribution of Bacillus thuringiensis strains in southern Sweden. World J Microbiol Biotechnol 10:45–50

    Article  CAS  PubMed  Google Scholar 

  • Lassner M, Bedbrook J (2001) Directed molecular evolution in plant improvement. Curr Opin Plant Biol 4:152–156

    Article  CAS  PubMed  Google Scholar 

  • Lecadet M, Frachon E, Dumanoir V et al (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86:660–672

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Miles P, Chen J (2006) Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem Biophys Res Commun 339:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Gray E, Mabood F et al (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229:747–755

    Article  CAS  PubMed  Google Scholar 

  • Lereclus D, Lecadet M, Ribier J, Dedonder R (1982) Molecular relationships among plasmids of Bacillus thuringiensis: conserved sequences through 11 crystalliferous strains. Mol Gen Genet 186:391–398

    Article  CAS  PubMed  Google Scholar 

  • Li J, Koni P, Ellar D (1996) Structure of the mosquitocidal δ endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol 257:129–152

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Xiong G (2004) Molecular cloning and sequence analysis of the chitinase gene from Bacillus thuringiensis serovar alesti. Biotechnol Lett 26:635–639

    Article  CAS  PubMed  Google Scholar 

  • Litwin DI, Sivura VV, Kurilo VV et al (2014) Creation of transgenic sugar beet lines expressing insect pest resistance genes cry1C and cry2A. Tsitol Genet 4:3–11

    Google Scholar 

  • Liu X, Yang Z, Gao G et al (2010) Development of Bt rice by molecular marker-assisted selection and assays for insect-resistance. Mol Plant Breed 1:2(1–5)

    Google Scholar 

  • Loc NT, Tinjuangjun P, Gatehouse AM et al (2002) Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol Breed 9:231–244

    Article  CAS  Google Scholar 

  • Lowe BA, Prakash NS, Way M et al (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res 18:831–840

    Article  CAS  PubMed  Google Scholar 

  • Ma G, Roberts H, Sarjan M et al (2005) Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochem Mol Biol 35:729–739

    Article  CAS  PubMed  Google Scholar 

  • Ma G, Rahman MM, Grant W et al (2012) Insect tolerance to the crystal toxins Cry1Ac and Cry2Ab is mediated by binding of monomeric toxin to lipophorin glycolipids causing oligomerization and sequestration reactions. Dev Comput Immunol 37:184–192

    Google Scholar 

  • MacIntosh S, Kishore G, Perlak F et al (1990) Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors. J Agric Food Chem 38:1145–1152

    Article  CAS  Google Scholar 

  • MacRae TC, Baur ME, Boethel DJ et al (2005) Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera. J Econ Entomol 98:577–587

    Article  PubMed  Google Scholar 

  • Maeda M, Mizuki E, Nakamura Y et al (2000) Recovery of Bacillus thuringiensis from marine sediments of Japan. Curr Microbiol 40:418–422

    Article  CAS  PubMed  Google Scholar 

  • Malathi B, Ramesh S, Rao K, Reddy V (2006) Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147:441–449

    Article  CAS  Google Scholar 

  • Malvar T, Baum J (1994) Tn5401 disruption of the spo0F gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis. J Bacteriol 176:4750–4753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandaokar A, Chakrabarti SK, Rao NGV et al (1998) A fusion gene coding for two different δ-endotoxins of Bacillus thuringiensis toxic to Plutella xylostella and useful for resistance management. World J Microbiol Biotechnol 14:599–601

    Article  CAS  Google Scholar 

  • Mandaokar A, Goyal R, Shukla A et al (2000) Transgenic tomato plants resistant to fruit borer (Helicoverpa armigera Hubner). Crop Prot 19:307–312

    Article  CAS  Google Scholar 

  • Maqbool S, Christou P (1999) Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol Breed 5:471–480

    Article  Google Scholar 

  • Maqbool S, Riazuddin S, Loc N et al (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93

    Article  CAS  Google Scholar 

  • Martin P, Travers R (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez C, Caballero P (2002) Contents of cry genes and insecticidal toxicity of Bacillus thuringiensis strains from terrestrial and aquatic habitats. J Appl Microbiol 92:745–752

    Article  PubMed  Google Scholar 

  • McGaughey W (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–195

    Article  CAS  PubMed  Google Scholar 

  • Meadows M, Ellis D, Butt J et al (1992) Distribution, frequency, and diversity of Bacillus thuringiensis in an animal feed mill. Appl Environ Microbiol 58:1344–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuki E, Ichimatsu T, Hwang S et al (1999) Ubiquity of Bacillus thuringiensis on phylloplanes of arboreous and herbaceous plants in Japan. J Appl Microbiol 86:979–984

    Article  Google Scholar 

  • Moar W, Trumble J, Hice R, Backman P (1994) Insecticidal activity of the CryIIA protein from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leaf-colonizing strain of Bacillus cereus. Appl Environ Microbiol 60:896–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moellenbeck D, Peters M, Bing J et al (2001) Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms. Nat Biotechnol 19:668–672

    Article  CAS  PubMed  Google Scholar 

  • Moran CP (1993) RNA polymerase and transcription factors. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria. American Society for Microbiology, Blackwell Science Ltd, Washington, DC, pp 653–667

    Chapter  Google Scholar 

  • Morin S, Biggs R, Sisterson M et al (2003) Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci U S A 100:5004–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumm RH (2007) Backcross versus forward breeding in the development of transgenic maize hybrids: theory and practice. Crop Sci 47:S164–S171

    Article  Google Scholar 

  • Murphy R, Stevens S Jr (1992) Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl Environ Microbiol 58:1650–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naimov S, Weemen-Hendriks M, Dukiandjiev S, de Maagd R (2001) Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle. Appl Environ Microbiol 67:5328–5330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navon A (2000) Bacillus thuringiensis insecticides in crop protection-reality and prospects. Crop Prot 19:669–676

    Article  Google Scholar 

  • Nayak P, Basu D, Das S et al (1997) Transgenic elite indica rice plants expressing CryIAc δ endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci U S A 94:2111–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppert B, Kramer K, Beeman R et al (1997) Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem 272:23473–23476

    Article  CAS  PubMed  Google Scholar 

  • Pardo-López L, Munoz-Garay C, Porta H et al (2009) Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 30:589–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pardo-López L, Soberon M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3–22

    Article  PubMed  CAS  Google Scholar 

  • Park S, Park S, Ryu C et al (2008) The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence. J Microbiol Biotechnol 18:1518–1521

    CAS  PubMed  Google Scholar 

  • Pérez C, Fernandez L, Sun J et al (2005) Bti Cry11Aa and Cyt1Aa toxins interactions support the synergism-model that Cyt1Aa functions as membrane–bound receptor. Proc Natl Acad Sci U S A 102:18303–18308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez C, Muñoz-Garay C, Portugal L et al (2007) Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol 9:2931–2937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perlak F, Deaton R, Armstrong T et al (1990) Insect resistant cotton plants. Nat Biotechnol 8:939–943

    Article  CAS  Google Scholar 

  • Perlak F, Fuchs R, Dean D et al (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A 88:3324–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlak F, Stone TB, Muskopf YM et al (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22:313–321

    Article  CAS  PubMed  Google Scholar 

  • Perlak F, Oppenhuizen M, Gustafson K et al (2001) Development and commercial use of Bollgard® cotton in the USA-early promises versus today’s reality. Plant J 27:489–501

    Article  CAS  PubMed  Google Scholar 

  • Poncet S, Bernard C, Dervyn E et al (1997) Improvement of Bacillus sphaericus toxicity against dipteran larvae by integration, via homologous recombination, of the Cry11A toxin gene from Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 63:4413–4420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poopathi S, Thirugnanasambantham K, Mani C et al (2014) Isolation of mosquitocidal bacteria (Bacillus thuringiensis, B. sphaericus and B. cereus) from excreta of arid birds. Indian J Exp Biol 52:739–747

    PubMed  Google Scholar 

  • Prabagaran S, Nimal S, Jayachandran S (2002) Phenotypic and genetic diversity of Bacillus thuringiensis strains isolated in India active against Spodoptera litura. Appl Biochem Biotechnol 102:213–226

    Article  PubMed  Google Scholar 

  • Promdonkoy B, Ellar D (2003) Investigation of the pore–forming mechanism of a cytolytic delta-endotoxin from Bacillus thuringiensis. Biochem J 374:255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Roberts H, Sarjan M et al (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc Natl Acad Sci U S A 101:2696–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Roberts H, Schmidt O (2007) Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella. J Invertebr Pathol 96:125–132

    Article  CAS  Google Scholar 

  • Raina SK, Talwar KD, Nayak NR et al (2002) Field evaluation and generation of two-gene Bt transgenics of indica rice. In: Abstract Int Rice Cong, Beijing, p 287

    Google Scholar 

  • Rajamohan F, Cotrill J, Gould F, Dean D (1996a) Role of domain ii, loop 2 residues of Bacillus thuringiensis cryiab endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens. J Biol Chem 271:2390–2397

    Article  CAS  PubMed  Google Scholar 

  • Rajamohan F, Hussain S, Cotrill J et al (1996b) Mutation in domain II, loop 3 of B. thuringiensis cry1Aa and cry1Ab delta endotoxin suggested loop 3 is involved in initial binding of lepidopteran midgets. J Biol Chem 271:25220–25225

    Article  CAS  PubMed  Google Scholar 

  • Ramalakshmi A, Udayasuriyan V (2010) Diversity of Bacillus thuringiensis isolated from Western Ghats of Tamil Nadu State, India. Curr Microbiol 61:13–18

    Article  CAS  PubMed  Google Scholar 

  • Ranjekar P, Patankar A, Gupta V, et al (2003) Genetic engineering of crop plants for insect resistance. Curr Sci 84:321–329

    Google Scholar 

  • Roh J, Kim Y, Wang Y et al (2010) Expression of Bacillus thuringiensis mosquitocidal toxin in an antimicrobial Bacillus brevis strain. J Asia Pac Entomol 13:61–64

    Article  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  CAS  PubMed  Google Scholar 

  • Ruan L, Huang Y, Zhang G et al (2002) Expression of the mel gene from Pseudomonas maltophilia in Bacillus thuringiensis. Lett Appl Microbiol 34:244–248

    Article  CAS  PubMed  Google Scholar 

  • Saitoh H, Okumura S, Ishikawa T et al (2006) Investigation of a novel Bacillus thuringiensis gene encoding a parasporal protein, parasporin-4, that preferentially kills human leukemic T cells. Biosci Biotechnol Biochem 70:2935–2941

    Google Scholar 

  • Salamitou S, Agaisse H, Bravo A, Lereclus D (1996) Genetic analysis of cryIIIA gene expression in Bacillus thuringiensis. Microbiology 142:2049–2055

    Article  CAS  PubMed  Google Scholar 

  • Salem HH, Ali BA, Huang TH, Xie QD (2006) Molecular characterization of novel Bacillus thuringiensis isolate with molluscicidal activity against the intermediate host of schistosomes. Biotechnology 5:413–420

    Article  Google Scholar 

  • Salles J, Gitahy P, Skot L, Baldani J (2000) Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis. Braz J Microbiol 31:154–160

    Article  Google Scholar 

  • Sanchis V, Lereclus D, Menou G et al (1988) Multiplicity of delta endotoxin genes with different insecticidal specificities in Bacillus thuringiensis aizawai. Mol Microbiol 2:393–404

    Article  CAS  PubMed  Google Scholar 

  • Santana MA, Moccia-V CC, Gillis AE (2008) Bacillus thuringiensis improved isolation methodology from soil samples. J Microbiol Method 75:357–358

    Article  CAS  Google Scholar 

  • Schnepf H, Whiteley H (1981) Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci U S A 78:2893–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz J, Lu Y, Söhnlein P et al (1997) Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors. FEBS Lett 412:270–276

    Article  CAS  PubMed  Google Scholar 

  • Sekar V, Thompson D, Maroney M et al (1987) Molecular cloning and characterization of the insecticidal crystal protein gene of Bacillus thuringiensis var. tenebrionis. Proc Natl Acad Sci U S A 84:7036–7040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma H, Ortiz R (2002) Host plant resistance to insects: an eco-friendly approach for pest management and environment conservation. J Environ Biol 23:111–135

    CAS  PubMed  Google Scholar 

  • Shu Q, Ye G, Cui H et al (2000) Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol Breed 6:433–439

    Article  CAS  Google Scholar 

  • Sirichotpakorn N, Rongnoparut P, Choosang K, Panbangred W (2001) Coexpression of chitinase and the cry11Aa1 toxin genes in Bacillus thuringiensis serovar israelensis. J Invertebr Pathol 78:160–169

    Article  CAS  PubMed  Google Scholar 

  • Smith R, Couche G (1991) The phylloplane as a source of Bacillus thuringiensis variants. Appl Environ Microbiol 57:311–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soberon M, Pardo-Lopez L, Lopez I et al (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640–1642

    Article  CAS  PubMed  Google Scholar 

  • Song F, Zhang J, Gu A et al (2003) Identification of cry1I type genes from Bacillus thuringiensis strains and characterization of a novel cry1I type gene. Appl Environ Microbiol 69:5207–5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stemmer W (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91:10747–10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock C, McLoughlin T, Klein J, Adang M (1990) Expression of a Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526. Can J Microbiol 36:879–884

    Article  CAS  Google Scholar 

  • Sudha S, Jayakumar R, Sekar V (1999) Introduction and expression of the cry1Ac gene of Bacillus thuringiensis in a cereal–associated bacterium, Bacillus polymyxa. Curr Microbiol 38:163–167

    Article  CAS  PubMed  Google Scholar 

  • Sudarsan N, Suma NR, Vennison JS et al (1994) Survival of a strain of Bacillus megaterium carrying a lepidopteran-specific gene of Bacillus thuringiensis in the phyllospheres of various economically important plants. Plant Soil 167:321–324

    Article  CAS  Google Scholar 

  • Swiecicka I, Fiedoruk K, Bednarz G (2002) The occurrence and properties of Bacillus thuringiensis isolated from free-living animals. Lett Appl Microbiol 34:194–198

    Article  CAS  PubMed  Google Scholar 

  • Swiecickawi I, De Vos P (2003) Properties of Bacillus thuringiensis isolated from bank voles. J Appl Microbiol 94:60–64

    Article  Google Scholar 

  • Tabashnik B (1994) Evolution of resistance to Bacillus thuringiensis. Ann Rev Entomol 39:47–79

    Article  Google Scholar 

  • Tabashnik B, Tushing N, Finson N, Johnson M (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 83:1671–1676

    Article  Google Scholar 

  • Tabashnik B, Liu Y, de Maagd R, Dennehy T (2000) Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Appl Environ Microbiol 66:4582–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Collins H, Metz T et al (2001) Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J Econ Entomol 94:240–247

    Article  CAS  PubMed  Google Scholar 

  • Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W (2001) Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol 56:395–401

    Article  CAS  PubMed  Google Scholar 

  • Thanabalu T, Hindley J, Brenner S et al (1992) Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae. Appl Environ Microbiol 58:905–910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theoduloz C, Vega A, Salazar M et al (2003) Expression of a Bacillus thuringiensis endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills). J Appl Microbiol 94:375–381

    Article  CAS  PubMed  Google Scholar 

  • Theunis W, Aguda R, Cruz W et al (1998) Bacillus thuringiensis isolates from the Philippines: habitat distribution, δ-endotoxin diversity and toxicity to rice stem borers (Lepidoptera: Pyralidae). Bull Entomol Res 88:335–342

    Article  CAS  Google Scholar 

  • Thomas W, Ellar D (1983) Mechanism of action of Bacillus thuringiensis var israelensis insecticidal δ endotoxin. FEBS Lett 154:362–368

    Article  CAS  PubMed  Google Scholar 

  • Travers R, Martin P, Reichelderfer C (1987) Selective process for efficient isolation of soil Bacillus spp. Appl Environ Microbiol 53:1263–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Udayasuriyan V, Nakamura A, Masaki H, Uozumi T (1995) Transfer of an insecticidal protein gene of Bacillus thuringiensis into plant-colonizing Azospirillum. World J Microbiol Biotechnol 11:163–167

    Article  CAS  PubMed  Google Scholar 

  • Uribe D, Martinez W, Ceron J (2003) Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J Invertebr Pathol 82:119–127

    Article  CAS  PubMed  Google Scholar 

  • Vadlamudi R, Weber E, Ji I et al (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270:5490–5494

    Article  CAS  PubMed  Google Scholar 

  • Vaeck M, Reynaerts A, Höfte H et al (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    Article  CAS  Google Scholar 

  • Valaitis A, Jenkins J, Lee M et al (2001) Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity. Arch Insect Biochem Phys 46:186–200

    Article  CAS  Google Scholar 

  • Van Wyk A, Van den Berg J, Van Rensburg J (2009) Comparative efficacy of Bt maize events MON810 and Bt11 against Sesamia calamistis (Lepidoptera: Noctuidae) in South Africa. Crop Prot 28:113–116

    Article  Google Scholar 

  • Vidal-Quist JC, Castañera P, González-Cabrera J (2009) Diversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis capitata. J Microbiol Biotechnol 19:749–759

    CAS  PubMed  Google Scholar 

  • Visarada K, Meena K, Aruna C et al (2009) Transgenic breeding: perspectives and prospects. Crop Sci 49:1555–1563

    Article  CAS  Google Scholar 

  • Walters F, Stacy C, Lee M et al (2008) An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against western corn rootworm larvae. Appl Environ Microbiol 74:367–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang G, Du J et al (2010) Influence of transgenic hybrid rice expressing a fused gene derived from cry1Ab and cry1Ac on primary insect pests and rice yield. Crop Prot 29:128–133

    Article  CAS  Google Scholar 

  • Warren G, Koziel M, Mullins M et al (1994) September 1994. World Intellectual Property Organization patent WO 94:21795

    Google Scholar 

  • Watrud L, Perlak F, Tran M et al (1985) Cloning of the Bacillus thuringiensis subsp. kurstaki delta endotoxin gene into Pseudomonas fluorescens. Molecular biology and ecology of an engineered microbial pesticide. In: Halvorson HO, Pramer D, Rogul M (eds) Engineered organisms in the environment: scientific issues. Am Soc Microbiol Appl Environ Microbiol, Washington, DC, pp 40–46

    Google Scholar 

  • Wei J, Hale K, Carta L et al (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 100:2760–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whalon M, Wingerd B (2003) Bt: mode of action and use. Arch Insect Biochem Phys 54:200–211

    Article  CAS  Google Scholar 

  • Wilson FD, Flint HM, Deaton WR et al (1992) Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. J Econ Entomol 85:1516–152

    Article  Google Scholar 

  • Wong H, Schnepf H, Whiteley H (1983) Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J Biol Chem 258:1960–1967

    CAS  PubMed  Google Scholar 

  • Wu D, Aronson A (1992) Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. J Biol Chem 267:2311–2317

    CAS  PubMed  Google Scholar 

  • Wu S, Koller C, Miller D et al (2000) Enhanced toxicity of Bacillus thuringiensis Cry3A δ-endotoxin in coleopterans by mutagenesis in a receptor binding loop. FEBS Lett 473:227–232

    Article  CAS  PubMed  Google Scholar 

  • Xiaoqiang W, Vennison S, Huirong L et al (1997) Mosquito larvicidal activity of transgenic Anabaena strain PCC 7120 expressing combinations of genes from Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 63:4971–4974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Yu L, Wu Y (2005) Disruption of a cadherin gene associated with resistance to cry1Ac δ endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol 71:948–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagiwa M, Sakagawa K, Sakai H (2004) Functional analysis of two processed fragments of Bacillus thuringiensis Cry11A toxin. Biosci Biotechnol Biochem 68:523–528

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, McLaughlin R (1981) Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochem Biophys Res Commun 103:414–421

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen H, Wu Y, Wu S (2007) Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Appl Environ Microbiol 73:6939–6944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye G, Yao H, Cui H et al (2001) Field evaluation of resistance of transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner to two stem borers. J Econ Entomol 94:271–276

    Article  CAS  PubMed  Google Scholar 

  • Yoshisue H, Fukada T, Yoshida K et al (1993) Transcriptional regulation of Bacillus thuringiensis subsp. israelensis mosquito larvicidal crystal protein gene cryIVA. J Bacteriol 175:2750–2753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Mullins M, Warren G et al (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zelazny B, Stephan D, Hamacher J (1994) Irregular crystal formation in some isolates of Bacillus thuringiensis. J Invertebr Pathol 63:229–234

    Article  Google Scholar 

  • Zhang X, Candas M, Griko N et al (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A 103:9897–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Luo Y, Song C et al (2007) Identification of three Zwittermicin A biosynthesis–related genes from Bacillus thuringiensis subsp. kurstaki strain YBT–1520. Arch Microbiol 187:313–319

    Article  CAS  PubMed  Google Scholar 

  • Zhong G (2001) Genetic issues and pitfalls in transgenic plant breeding. Euphytica 118:137–144

    Article  CAS  Google Scholar 

  • Zhong W, Fang J, Cai P et al (2005) Cloning of the Bacillus thuringiensis serovar sotto chitinase (schi) gene and characterization of its protein. Genet Mol Biol 28:821–826

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jain, D., Saharan, V., Pareek, S. (2016). Current Status of Bacillus thuringiensis: Insecticidal Crystal Proteins and Transgenic Crops. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Springer, Cham. https://doi.org/10.1007/978-3-319-22518-0_18

Download citation

Publish with us

Policies and ethics