Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 265 Accesses

Abstract

This thesis has two focuses, both in the area of biomembranes. One focus is on the interaction of a biomedically important Tat peptide with membranes. The other is on a fundamental problem regarding the enigmatic structure of a pure lipid bilayer. Section 1.1 introduces lipid molecules that constitute biomembranes and three thermodynamic phases displayed by lipids pertinent to this thesis. The Tat peptide and its biomedical importance are introduced in Sect 1.2, followed by a brief overview of the ripple phase in Sect. 1.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. J.F. Nagle, S. Tristram-Nagle, Structure of lipid bilayers. Biochim. Biophys. Acta (BBA) – Rev. Biomembr. 1469(3), 159–195 (2000)

    Google Scholar 

  2. P.F. Fahey, W.W. Webb, Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. Biochemistry 17(15), 3046–3053 (1978)

    Article  Google Scholar 

  3. G.S. Smith, E.B. Sirota, C.R. Safinya, N.A. Clark, Structure of the L β phases in a hydrated phosphatidylcholine multimembrane. Phys. Rev. Lett. 60, 813–816 (1988)

    Article  ADS  Google Scholar 

  4. A. Tardieu, V. Luzzati, F. Reman, Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J. Mol. Biol. 75(4), 711–733 (1973)

    Article  Google Scholar 

  5. S. Tristram-Nagle, R. Zhang, R.M. Suter, C.R. Worthington, W.J. Sun, J.F. Nagle, Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys. J. 64(4), 1097–1109 (1993)

    Article  Google Scholar 

  6. S. Tristram-Nagle, Y. Liu, J. Legleiter, J.F. Nagle, Structure of gel phase DMPC determined by X-ray diffraction. Biophys. J. 83(6), 3324–3335 (2002)

    Article  ADS  Google Scholar 

  7. L.V. Chernomordik, M.M. Kozlov, Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72(1), 175–207 (2003)

    Article  Google Scholar 

  8. W. Dowhan, Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66(1), 199–232 (1997)

    Article  Google Scholar 

  9. Y.N. Vaishnav, F. Wong-Staal, The biochemistry of AIDS. Annu. Rev. Biochem. 60(1), 577–630 (1991)

    Article  Google Scholar 

  10. T. Raha, S.G. Cheng, M.R. Green, HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol. 3(2), e44 (2005)

    Google Scholar 

  11. D. Macías, R. Oya, L. Saniger, F. Martín, F. Luque, A lentiviral vector that activates latent human immunodeficiency virus-1 proviruses by the overexpression of Tat and that kills the infected cells. Hum. Gene Therapy 20(11), 1259–1268 (2009)

    Article  Google Scholar 

  12. S. Ruben, A. Perkins, R. Purcell, K. Joung, R. Sia, R. Burghoff, W. Haseltine, C. Rosen, Structural and functional characterization of human immunodeficiency virus Tat protein. J. Virol. 63(1), 1–8 (1989)

    Google Scholar 

  13. J. Hauber, A. Perkins, E.P. Heimer, B.R. Cullen, Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. Proc. Natl. Acad. Sci. 84(18), 6364–6368 (1987)

    Article  ADS  Google Scholar 

  14. S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, Y. Sugiura, Arginine-rich peptides an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276(8), 5836–5840 (2001)

    Article  Google Scholar 

  15. M. Grabe, H. Lecar, Y.N. Jan, L.Y. Jan, A quantitative assessment of models for voltage-dependent gating of ion channels. Proc. Natl. Acad. Sci. 101(51), 17640–17645 (2004)

    Article  ADS  Google Scholar 

  16. H.D. Herce, A.E. Garcia, Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 Tat peptide across lipid membranes. Proc. Natl. Acad. Sci. 104(52), 20805–20810 (2007)

    Article  ADS  Google Scholar 

  17. E.O. Freed, HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251(1), 1–15 (1998)

    Article  Google Scholar 

  18. D.C. Wack, W.W. Webb, Synchrotron X-ray study of the modulated lamellar phase \(P_{\beta ^{{\prime}}}\) in the lecithin-water system. Phys. Rev. A 40, 2712–2730 (1989)

    Article  ADS  Google Scholar 

  19. S. Doniach, A thermodynamic model for the monoclinic (ripple) phase of hydrated phospholipid bilayers. J. Chem. Phys. 70(10), 4587–4596 (1979)

    Article  ADS  Google Scholar 

  20. M. Marder, H.L. Frisch, J.S. Langer, H.M. McConnell, Theory of the intermediate rippled phase of phospholipid bilayers. Proc. Natl. Acad. Sci. 81(20), 6559–6561 (1984)

    Article  ADS  Google Scholar 

  21. M.H. Hawton, W.J. Keeler, van der Waals energy of lecithins in the ripple phase. Phys. Rev. A 33(5), 3333 (1986)

    Google Scholar 

  22. J.M. Carlson, J.P. Sethna, Theory of the ripple phase in hydrated phospholipid bilayers. Phys. Rev. A 36(7), 3359 (1987)

    Google Scholar 

  23. R.E. Goldstein, S. Leibler, Model for lamellar phases of interacting lipid membranes. Phys. Rev. Lett. 61(19), 2213 (1988)

    Google Scholar 

  24. W.S. McCullough, H.L. Scott, Statistical-mechanical theory of the ripple phase of lipid bilayers. Phys. Rev. Lett. 65, 931–934 (1990)

    Article  ADS  Google Scholar 

  25. K. Honda, H. Kimura, Theory on formation of the ripple phase in bilayer membranes. J. Phys. Soc. Jpn. 60(4), 1212–1215 (1991)

    Article  ADS  Google Scholar 

  26. T.C. Lubensky, F.C. MacKintosh, Theory of “ripple” phases of lipid bilayers. Phys. Rev. Lett. 71(10), 1565 (1993)

    Google Scholar 

  27. K. Sengupta, V. Raghunathan, Y. Hatwalne, Role of tilt order in the asymmetric ripple phase of phospholipid bilayers. Phys. Rev. Lett. 87(5), 055705_1–055705_4 (2001)

    Google Scholar 

  28. M.A. Kamal, A. Pal, V.A. Raghunathan, M. Rao, Theory of the asymmetric ripple phase in achiral lipid membranes. Europhys. Lett. 95(4), 48004 (2011)

    Google Scholar 

  29. A.H. de Vries, S. Yefimov, A.E. Mark, S.J. Marrink, Molecular structure of the lecithin ripple phase. Proc. Natl. Acad. Sci. 102(15), 5392–5396 (2005)

    Article  ADS  Google Scholar 

  30. O. Lenz, F. Schmid, Structure of symmetric and asymmetric “ripple” phases in lipid bilayers. Phys. Rev. Lett. 98, 058104 (2007)

    Article  ADS  Google Scholar 

  31. H.L. Scott, Monte Carlo studies of a general model for lipid bilayer condensed phases. J. Chem. Phys. 80(5), 2197–2202 (1984)

    Article  ADS  Google Scholar 

  32. A. Debnath, K.G. Ayappa, V. Kumaran, P.K. Maiti, The influence of bilayer composition on the gel to liquid crystalline transition. J. Phys. Chem. B 113(31), 10660–10668 (2009). PMID: 19594148

    Article  Google Scholar 

  33. M.J. Janiak, D.M. Small, G.G. Shipley, Nature of the thermal pretransition of synthetic phospholipids: dimyristoyl- and dipalmitoyllecithin. Biochemistry 15(21), 4575–4580 (1976)

    Article  Google Scholar 

  34. B.R. Copeland, H.M. McConnell, The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol. Biochim. Biophys. Acta (BBA) – Biomembr. 599(1), 95–109 (1980)

    Google Scholar 

  35. D. Ruppel, E. Sackmann, On defects in different phases of two-dimensional lipid bilayers. J. Phys. 44(9) 1025–1034 (1983)

    Article  Google Scholar 

  36. J. Zasadzinski, M. Schneider, Ripple wavelength, amplitude, and configuration in lyotropic liquid crystals as a function of effective headgroup size. J. Phys. 48(11), 2001–2011 (1987)

    Article  Google Scholar 

  37. W.J. Sun, S. Tristram-Nagle, R.M. Suter, J.F. Nagle, Structure of the ripple phase in lecithin bilayers. Proc. Natl. Acad. Sci. 93(14), 7008–7012 (1996)

    Article  ADS  Google Scholar 

  38. J. Katsaras, S. Tristram-Nagle, Y. Liu, R. Headrick, E. Fontes, P. Mason, J.F. Nagle, Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys. Rev. E 61(5), 5668 (2000)

    Google Scholar 

  39. K. Sengupta, V.A. Raghunathan, J. Katsaras, Structure of the ripple phase of phospholipid multibilayers. Phys. Rev. E 68, 031710 (2003)

    Article  ADS  Google Scholar 

  40. P.C. Mason, B.D. Gaulin, R.M. Epand, G.D. Wignall, J.S. Lin, Small angle neutron scattering and calorimetric studies of large unilamellar vesicles of the phospholipid dipalmitoylphosphatidylcholine. Phys. Rev. E 59(3), 3361 (1999)

    Google Scholar 

  41. R.A. Parente, B.R. Lentz, Phase behavior of large unilamellar vesicles composed of synthetic phospholipids. Biochemistry 23(11), 2353–2362 (1984)

    Article  Google Scholar 

  42. T.J. McIntosh, Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. a molecular packing model. Biophys. J. 29(2), 237–245 (1980)

    Google Scholar 

  43. J. Nagle, Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions. J. Membr. Biol. 27(1), 233–250 (1976)

    Article  Google Scholar 

  44. G. Cevc, Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae. Biochim. Biophys. Acta (BBA)-Biomembr. 1062(1), 59–69 (1991)

    Google Scholar 

  45. R. Wittebort, C. Schmidt, R. Griffin, Solid-state carbon-13 nuclear magnetic resonance of the lecithin gel to liquid-crystalline phase transition. Biochemistry 20(14), 4223–4228 (1981)

    Article  Google Scholar 

  46. M.B. Schneider, W.K. Chan, W.W. Webb, Fast diffusion along defects and corrugations in phospholipid \(P_{\beta ^{{\prime}}}\), liquid crystals. Biophys. J. 43(2), 157–165 (1983)

    Article  Google Scholar 

  47. D. Marsh, Molecular motion in phospholipid bilayers in the gel phase: long axis rotation. Biochemistry 19(8), 1632–1637 (1980)

    Article  Google Scholar 

  48. B.A. Cunningham, A.-D. Brown, D.H. Wolfe, W.P. Williams, A. Brain, Ripple phase formation in phosphatidylcholine: effect of acyl chain relative length, position, and unsaturation. Phys. Rev. E 58(3), 3662 (1998)

    Google Scholar 

  49. M. Rappolt, G. Pabst, G. Rapp, M. Kriechbaum, H. Amenitsch, C. Krenn, S. Bernstorff, P. Laggner, New evidence for gel-liquid crystalline phase coexistence in the ripple phase of phosphatidylcholines. Eur. Biophys. J. 29(2), 125–133 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akabori, K. (2015). Introduction. In: Structure Determination of HIV-1 Tat/Fluid Phase Membranes and DMPC Ripple Phase Using X-Ray Scattering. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22210-3_1

Download citation

Publish with us

Policies and ethics