Skip to main content

Likelihood-Based Inference of Phylogenetic Networks from Sequence Data by PhyloDAG

  • Conference paper
  • First Online:
Algorithms for Computational Biology (AlCoB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9199))

Included in the following conference series:

Abstract

Processes such as hybridization, horizontal gene transfer, and recombination result in reticulation which can be modeled by phylogenetic networks. Earlier likelihood-based methods for inferring phylogenetic networks from sequence data have been encumbered by the computational challenges related to likelihood evaluations. Consequently, they have required that the possible network hypotheses be given explicitly or implicitly in terms of a backbone tree to which reticulation edges are added. To achieve speed required for unrestricted network search instead of only adding reticulation edges to an initial tree structure, we employ several fast approximate inference techniques. Preliminary numerical and real data experiments demonstrate that the proposed method, PhyloDAG, is able to learn accurate phylogenetic networks based on limited amounts of data using moderate amounts of computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The implementation is available for download at http://phylomemetic.wordpress.com/2015/04/17/phylodag/.

  2. 2.

    http://bioinfo.cs.rice.edu/phylonet.

  3. 3.

    http://www.rjr-productions.org/Database.html.

References

  1. Aguilar, J.F., Rosselló, J., Feliner, G.N.: Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol. Ecol. 8(8), 1341–1346 (1999)

    Article  Google Scholar 

  2. Celeux, G., Diebolt, J.: The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Stat. Q. 2(1), 73–82 (1985)

    Google Scholar 

  3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  5. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)

    Article  Google Scholar 

  6. Friedman, N., Ninio, M., Pe’er, I., Pupko, T.: A structural EM algorithm for phylogenetic inference. J. Comput. Biol. 9(2), 331–353 (2002)

    Article  Google Scholar 

  7. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell, MA (1997)

    Book  MATH  Google Scholar 

  8. Haeseler, A., Churchill, G.A.: Network models for sequence evolution. J. Mol. Evol. 37(1), 77–85 (1993)

    Article  Google Scholar 

  9. Husmeier, D., Wright, F.: Detection of recombination in DNA multiple alignments with hidden Markov models. J. Comput. Biol. 8(4), 401–427 (2001)

    Article  Google Scholar 

  10. Jin, G., Nakhleh, G., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22, 2604–2611 (2006)

    Article  Google Scholar 

  11. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. Mamm. Protein Metab. 3, 21–132 (1969)

    Article  Google Scholar 

  12. Meng, C., Kubatko, L.S.: Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: a model. Theor. Popul. Biol. 75(1), 35–45 (2009)

    Article  MATH  Google Scholar 

  13. Morrison, D.: Introduction to Phylogenetic Networks. RJR Productions, Uppsala (2011)

    Google Scholar 

  14. Nielsen, S.F.: The stochastic EM algorithm: estimation and asymptotic results. Bernoulli 6, 457–489 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Park, H.J., Nakhleh, L.: Inference of reticulate evolutionary histories by maximum likelihood: the performance of information criteria. BMC Bioinf. 13(Suppl 19), S12 (2012)

    Google Scholar 

  16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

    MATH  Google Scholar 

  17. Ronquist, F., Huelsenbeck, J.P.: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12), 1572–1574 (2003)

    Article  Google Scholar 

  18. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  19. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sneath, P.H.A.: Cladistic representation of reticulate evolution. Syst. Zool. 24, 360–368 (1975)

    Article  Google Scholar 

  21. Strimmer, K., Moulton, V.: Likelihood analysis of phylogenetic networks using directed graphical models. Mol. Biol. Evol. 17(6), 875–881 (2000)

    Article  Google Scholar 

  22. Strimmer, K., Wiuf, C., Moulton, V.: Recombination analysis using directed graphical models. Mol. Biol. Evol. 18(1), 97–99 (2001)

    Article  Google Scholar 

  23. Tehrani, J., Nguyen, Q., Roos, T.: Oral fairy tale or literary fake? Investigating the origins of Little Red Riding Hood using phylogenetic network analysis. Digital Scholarship in the Humanities (2015, to appear)

    Google Scholar 

  24. Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Netw. 11(2), 271–282 (1998)

    Article  Google Scholar 

  25. Webb, A., Hancock, J.M., Holmes, C.C.: Phylogenetic inference under recombination using Bayesian stochastic topology selection. Bioinformatics 25(2), 197–203 (2009)

    Article  Google Scholar 

  26. Whelan, S., Lio, P., Goldman, N.: Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet. 17(5), 262–272 (2001)

    Article  Google Scholar 

  27. Yu, Y., Dong, J., Liu, K.J., Nakhleh, L.: Maximum likelihood inference of reticulate evolutionary histories. Proc. Nat. Acad. Sci. 111(46), 16448–16453 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Academy of Finland (Center-of-Excellence COIN). We are grateful to Vincent Moulton for insightful comments. The anonymous reviewers suggested a comparison to the PhyloNet method and made several other suggestions that significantly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teemu Roos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, Q., Roos, T. (2015). Likelihood-Based Inference of Phylogenetic Networks from Sequence Data by PhyloDAG. In: Dediu, AH., Hernández-Quiroz, F., Martín-Vide, C., Rosenblueth, D. (eds) Algorithms for Computational Biology. AlCoB 2015. Lecture Notes in Computer Science(), vol 9199. Springer, Cham. https://doi.org/10.1007/978-3-319-21233-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21233-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21232-6

  • Online ISBN: 978-3-319-21233-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics