Skip to main content

Of Trees and Bushes: Phylogenetic Networks as Tools to Detect, Visualize and Model Reticulate Evolution

  • Chapter
  • First Online:
Evolutionary Biology: Exobiology and Evolutionary Mechanisms
  • 1622 Accesses

Abstract

Phylogenetic trees have been the main tools for representing evolutionary relationships among biological entities at the level of species and above, and their use has greatly facilitated the discussion and testing of phylogenetic and evolutionary hypotheses. However, they are not well suited to model nor represent well known non-vertical evolutionary events such as recombination, horizontal gene transfer, and polyploid and hybrid speciation. Recent advances in phylogenetic network estimation and implementation to genomic data sets, of which I present a brief summary, can better account for reticulated and complex evolutionary histories.

Molecular phylogeneticists will have failed to find the true tree, not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot properly be represented as a tree

Ford Doolittle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiri H, Davids W, Andersson SGE (2003) Birth and death of orphan genes in Rickettsia. Mol Biol Evol 20:1575–1587

    Article  PubMed  CAS  Google Scholar 

  • Arias M, Danchin EGJ, Coutinho P, Henrissat B, Ball S (2012) Eukaryote to gut bacteria transfer of a glycoside hydrolase gene essential for starch breakdown in plants. Mob Genet Elem 2:81–87. doi:10.4161/mge.20375

    Google Scholar 

  • Bandelt H-J, Dress AWM (1992) A canonical decomposition theory for metrics on a finite set. Adv Math 92:47–105

    Article  Google Scholar 

  • Bandelt HJ, Dress A (1993) A relational approach to split decomposition. In: Opitz O, Lausen B, Klar R (eds) Information and classification. Springer, Berlin, pp 123–131

    Chapter  Google Scholar 

  • Bandelt HJ, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human population using median networks. Genetics 141:743–753

    PubMed  CAS  Google Scholar 

  • Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–792. doi:710.1146/annurev.genet.1138.072902.094318

    Article  PubMed  CAS  Google Scholar 

  • Boschetti C, Carr A, Crisp A, Eyres I, Wang-Koh Y, Lubzens E, Barraclough TG, Micklem G, Tunnacliffe A (2012) Biochemical diversification through foreign gene expression in Bdelloid rotifers. PLoS Genet 8:e1003035. doi:1003010.1001371/journal.pgen.1003035

    Article  PubMed  CAS  Google Scholar 

  • Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc R Soc Lond B 277:819–827. doi:810.1098/rspb.2009.1679

    Google Scholar 

  • Brown JR, Masuchi Y, Robb FT, Doolittle FW (1994) Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol 38:566–576

    Article  PubMed  CAS  Google Scholar 

  • Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28:281–285

    Article  PubMed  CAS  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    Article  PubMed  CAS  Google Scholar 

  • Budroni S, Siena E, Dunning JCH, Seib KL, Serruto D, Nofroni C, Comanducci M, Riley DR, Daugherty SC, Angiuoli SV, Covacci A, Pizza M, Rappuoli R, Moxon ER, Tettelin H, Medini D (2011) Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci 108:4494–4499

    Article  PubMed  CAS  Google Scholar 

  • Campbell A, Mrzek J, Karlin S (1999) Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci 96:9184–9189

    Article  PubMed  CAS  Google Scholar 

  • Choy C, Jansson J, Sadakane K, Sung WK (2005) Computing the maximum agreement of phylogenetic networks. Theor Comput Sci 335:93–107

    Article  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 12:938–950

    Article  Google Scholar 

  • Cortez D, Forterre P, Gribaldo S (2009) A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biol 10:R65. doi:10.1186/gb-2009-1110-1186-r1165

    Article  PubMed  Google Scholar 

  • Coscollá M, Comas I, González-Candelas F (2011) Quantifying Nonvertical Inheritance in the evolution of Legionella pneumophila. Mol Biol Evol 28:985–1001

    Article  PubMed  Google Scholar 

  • Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci 105:10039–10044

    Article  PubMed  CAS  Google Scholar 

  • Daubin V, Lerat E, Perriere G (2003) The source of laterally transferred genes in bacterial genomes. Genome Biology 4(9):R57. doi:10.1186/gb-2003-1184-1189-r1157

    Google Scholar 

  • Didelot X, Bowden R, Street T, Golubchik T, Spencer C, McVean G, Sangal V, Anjum MF, Achtman M, Falush D, Donnelly P (2011) Recombination and population structure in Salmonella enterica. PLoS Genetics 7:e1002191. doi:1002110.1001371/journal.pgen.1002191

    Article  PubMed  CAS  Google Scholar 

  • Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600

    Article  PubMed  CAS  Google Scholar 

  • Ebersberger I et al (2007) Mapping human genetic ancestry. Moleculart Biol Evol 24:2266–2276

    Article  CAS  Google Scholar 

  • Felsenstein J (2001) The troubled growth of statistical phylogenetics. Syst Biol 50:465–467

    Article  PubMed  CAS  Google Scholar 

  • Fraser C, Hanage WP, Spratt BG (2005) Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci 102:1968–1973

    Article  PubMed  CAS  Google Scholar 

  • Gophna U, Charlebois RL, Doolittle FW (2006) Ancient lateral gene transfer in the evolution of Bdellovibrio bacteriovorus. Trends Microbiol 14:64–69. doi:10.1016/j.tim.2005.1012.1008

    Article  PubMed  CAS  Google Scholar 

  • Grantham R, Gautier C, Gouy M, Jacobzone M, Mercier R (1981) Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res 9:43–74

    Article  Google Scholar 

  • Green RE, Krause J, Briggs AW et al (2010) A draft sequence of the neanderthal genome. Science 328:710–722

    Google Scholar 

  • Guindon S, Perriere G (2001) Intragenomic base content variation is a potential source of biases when searching for horizontally transferred genes. Mol Biol Evol 18:1838–1840

    Article  PubMed  CAS  Google Scholar 

  • Gusfield D, Eddhu S, Langley C (2003) Efficient reconstruction of phylogenetic networks with constrained recombinations. In: Proceedings of the IEEE computer science conference on bioinformatics (CSB), IEEE Computer Society, p 363

    Google Scholar 

  • Herzel H, Weiss O, Trifonov EN (1999) 10–11 bp periodicities in complete genomes reflect protein structure and DNA folding. Bioinformatics 15:187–193

    Article  PubMed  CAS  Google Scholar 

  • Hilario E, Gogarten JP (1993) Horizontal transfer of ATPase genes-the tree of life becomes a net of life. Bio Syst 31:111–119

    CAS  Google Scholar 

  • Holland B, Moulton V (2003) Consensus networks: a method for visualizing incompatibilities in collections of trees. In: WABI 2003. Algorithms in bioinformatics. In: Benson G, Page R (eds) Proceedings of the third international workshop on algorithms in bioinformatics (WABI), Springer, Budapest, Hungary. Heidelberg (Germany), pp 165–176

    Google Scholar 

  • Huang S, Buell CR, Visser RGF et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B, Yang Z (1997) Statistical tests of host-parasite cospeciation. Evolution 51:410–419

    Article  Google Scholar 

  • Huelsenbeck JP, Rannala B, Larget B (2000) A Bayesian framework for the analysis of cospeciation. Evolution 54:353–364

    Google Scholar 

  • Huson DH, Klopper TH (2005) Computing recombination networks from binary sequences. Bioinformatics 21:ii159–ii165

    Google Scholar 

  • Huson DH, Scornavacca C (2011) A survey of combinatorial methods for phylogenetic networks. Genome Biol Evol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Dezulian T, Klopper T, Steel MA (2004) Phylogenetic supernetworks from partial trees. IEEE/ACM Trans Comput Biol Bioinform 1:151–158

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Rupp R, Berry V, Gambette P, Paul C (2009) Computing galled networks from real data. Bioinformatics 25:i85–i93

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks. Concepts, algorithms and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Kanj IA, Nakhleh L, Than C, Xia G (2008) Seeing the trees and their branches in the network is hard. Theor Comput Sci 401:153–164

    Article  Google Scholar 

  • Lang AS, Beatty JT (2007) Importance of widespread gene transfer agent genes in alpha-proteobacteria. Trends Microbiol 15:54–62

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397

    Article  PubMed  CAS  Google Scholar 

  • Lawrence DP, Kroken S, Pryor BM, Arnold AE (2011) Interkingdom gene transfer of a hybrid NPS/PKS from bacteria to filamentous ascomycota. PLoS One e28231. doi:10.1371/journal.pone.0028231

  • Lindell B, Penny D (2003) The modern molecular clock. Nat Rev Genet 4:216–224. doi:210.1038/nrg1020

    Article  Google Scholar 

  • Lysak MA, Cheung K, Kitschke M, Bures P (2007) Ancestral chromosomal blocks are triplicated in Brassicaceae species with varying chromosome number and genome size. Plant Physiol 145:402–410

    Article  PubMed  CAS  Google Scholar 

  • Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG (2000) Barriers to genetic exchange between bacterial species: streptococcus pneumoniae transformation. J Bacteriol 182:1016–1023

    Article  PubMed  CAS  Google Scholar 

  • Mallet J, Ludovic V, Becq J, Deschavanne P (2010) Whole genome evaluation of horizontal transfers in the pathogenic fungus Aspergillus fumigatus. BMC Genomics 11:171. doi:110.1186/1471-2164-1111-1171

    Article  PubMed  Google Scholar 

  • Médigue C, Rouxel T, Vigier P, Hénaut A, Danchin A (1991) Evidence of horizontal gene transfer in Escherichia coli speciation. J Mol Biol 222:851–856

    Article  PubMed  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267. doi:210.1126/science.1134196

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36:760–766. doi:710.1038/ng1381

    Article  PubMed  CAS  Google Scholar 

  • Naor A, Lapierre P, Mevarech M, Papke RT, Gophna U (2012) Low species barriers in halophilic Archaea and the formation of recombinant hybrids. Curr Biol 22:1444–1448

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK et al (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329. doi:310.1038/20601

    Google Scholar 

  • Nesb CL, Boucher Y, Doolittle FW (2001) Defining the core of nontransferable prokaryotic genes: the euryarchaeal core. J Mol Evol 53:340–350. doi:310.1007/s002390010224

    Article  Google Scholar 

  • Novichkov P, Omelchenko M, Gelfand M, Mironov A, Wolf Y, Koonin E (2004) Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. J Bacteriol 186:6575. doi:6510.1128/JB.6186.6519.6575-6585.2004

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–305

    Article  PubMed  CAS  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    Google Scholar 

  • Planet PJ, Kachlany SC, Fine DH, DeSalle R, Figurski DH (2003) The widespread colonization island of Actinobacillus actinomycetemcomitans. Nat Genet 34:193–198

    Article  PubMed  CAS  Google Scholar 

  • Popa O, Dagan T (2011) Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol 14:1–9. doi:10.1016/j.mib.2011.1007.1027

    Article  Google Scholar 

  • Puigbò P, Wolf YI, Koonin EV (2009) Search for a ‘Tree of life’ in the thicket of the phylogenetic forest. J Biol 8:59

    Article  PubMed  Google Scholar 

  • Raymond B, Wyres KL, Sheppard SK, Ellis RJ, Bonsall MB (2010) Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog 6:e1000905. doi:1000910.1001371/journal.ppat.1000905

    Article  PubMed  Google Scholar 

  • Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H et al (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303:689–692. doi:610.1126/science.1093027

    Google Scholar 

  • Retchless A, Lawrence JG (2010) Phylogenetic incongruence arising from fragmented speciation in enteric bacteria. Proc Natl Acad Sci 107:11453–11458. doi:11410.11073/pnas.1001291107

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624

    Article  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    Article  PubMed  CAS  Google Scholar 

  • Scornavacca C, Linz S, Albrecht B (2012) A first step toward computing all hybridization networks for two rooted binary phylogenetic trees. J Comput Biol 19:1227–1242. doi:1210.1089/cmb.2012.0192

    Article  PubMed  CAS  Google Scholar 

  • Song YS, Hein J (2005) Constructing minimal ancestral recombination graphs. J Comput Biol 12:147–169

    Article  PubMed  CAS  Google Scholar 

  • Supek F, Skunca N, Repar J, Vlahovicek K, Smuc T (2010) Translational selection is ubiquitous in prokaryotes. PLoS Genet 6:e1001004. doi:1001010.1001371/journal.pgen.1001004

    Article  PubMed  Google Scholar 

  • Teichmann SA, Mitchison G (1999) Is there a phylogenetic signal in prokaryote proteins? J Mol Evol 49:98–107

    Article  PubMed  CAS  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Micriobiol 3:711–721

    Article  CAS  Google Scholar 

  • Tofigh A, Hallet M, Lagergren J (2010) Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans Comput Biol Bioinform 8:517–535. doi:10.1109/TCBB.2010.14

    Google Scholar 

  • Vernikos GS, Thomson NR, Parkhill J (2007) Genetic flux over time in the Salmonella lineage. Genome Biol 8:R100. doi:110.1186/gb-2007-1188-1186-r1100

    Article  PubMed  Google Scholar 

  • Vulic M, Dionisio F, Taddei F, Radman M (1997) Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci 94:9763–9767

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Ma B, Li M (2000) Fixed topology alignment with recombination. Discrete Appl Math 104:281–300

    Article  Google Scholar 

  • Worning P, Jensen LJ, Nelson KE, Brunak S, Ussery DW (2000) Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima. Nucleic Acids Res 28:706–709

    Article  PubMed  CAS  Google Scholar 

  • Wozniak RAF, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Micriobiol 8:552–563

    Article  CAS  Google Scholar 

  • Zawadzki P, Roberts MS, Cohan FM (1995) The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140:917–932

    PubMed  CAS  Google Scholar 

  • Zhandong L, Venkatesh SS, Maley CC (2008) Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples. BMC Genomics 9:509. doi:510.1186/1471-2164-1189-1509

    Article  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Hernandez-Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hernandez-Lopez, A. (2013). Of Trees and Bushes: Phylogenetic Networks as Tools to Detect, Visualize and Model Reticulate Evolution. In: Pontarotti, P. (eds) Evolutionary Biology: Exobiology and Evolutionary Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38212-3_10

Download citation

Publish with us

Policies and ethics