Skip to main content

Dual-Energy CT in Thoracic Imaging

  • Chapter
Dual-Energy CT in Cardiovascular Imaging

Abstract

Dual energy CT (DECT) of the chest is most commonly used to visualize the iodine distribution in the pulmonary parenchyma as a surrogate for pulmonary perfusion. Additionally, pulmonary ventilation can be assessed using inhaled contrast agents. This functional information is obtained along with the high-resolution anatomical information CT provides. Visualization of iodine uptake has also been investigated in thoracic oncologic imaging; here, it may aid in the characterization of pulmonary nodules. Furthermore, DECT offers the possibility for novel reconstruction techniques which can optimize contrast-to-noise ratio in chest CT. Overall, thoracic DECT is still in early stages of development. While numerous studies have demonstrated its feasibility and diagnostic potential, reliable data on the value of the technique for clinical decision-making is still missing. Currently, only lung perfusion assessment and post-processing techniques for image contrast optimization can be considered established enough for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thieme SF, Johnson TR, Lee C, et al. Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol. 2009;193:144–9.

    Article  PubMed  Google Scholar 

  2. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17:1510–7.

    Article  PubMed  Google Scholar 

  3. Lee CW, Seo JB, Lee Y, et al. A pilot trial on pulmonary emphysema quantification and perfusion mapping in a single-step using contrast-enhanced dual-energy computed tomography. Invest Radiol. 2012;47:92–7.

    Article  PubMed  Google Scholar 

  4. Nance Jr JW, Henzler T, Meyer M, et al. Optimization of contrast material delivery for dual-energy computed tomography pulmonary angiography in patients with suspected pulmonary embolism. Invest Radiol. 2012;47:78–84.

    Article  CAS  PubMed  Google Scholar 

  5. Remy-Jardin M, Faivre JB, Pontana F, et al. Thoracic applications of dual energy. Radiol Clin North Am. 2010;48:193–205.

    Article  PubMed  Google Scholar 

  6. Remy-Jardin M, Faivre JB, Pontana F, Molinari F, Tacelli N, Remy J. Thoracic applications of dual energy. Semin Respir Crit Care Med. 2014;35:64–73.

    Article  PubMed  Google Scholar 

  7. Thieme SF, Becker CR, Hacker M, Nikolaou K, Reiser MF, Johnson TR. Dual energy CT for the assessment of lung perfusion – correlation to scintigraphy. Eur J Radiol. 2008;68:369–74.

    Article  PubMed  Google Scholar 

  8. Thieme SF, Graute V, Nikolaou K, et al. Dual energy CT lung perfusion imaging – correlation with SPECT/CT. Eur J Radiol. 2012;81:360–5.

    Article  CAS  PubMed  Google Scholar 

  9. Fuld MK, Halaweish AF, Haynes SE, Divekar AA, Guo J, Hoffman EA. Pulmonary perfused blood volume with dual-energy CT as surrogate for pulmonary perfusion assessed with dynamic multidetector CT. Radiology. 2013;267:747–56.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Dournes G, Verdier D, Montaudon M, et al. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy. Eur Radiol. 2013. doi:10.1007/s00330-013-2975-y.

    PubMed  Google Scholar 

  11. Nakazawa T, Watanabe Y, Hori Y, et al. Lung perfused blood volume images with dual-energy computed tomography for chronic thromboembolic pulmonary hypertension: correlation to scintigraphy with single-photon emission computed tomography. J Comput Assist Tomogr. 2011;35:590–5.

    Article  PubMed  Google Scholar 

  12. Johnson TR, Thieme SF, Deutsch MA, et al. Images in cardiovascular medicine: unilateral pulmonary artery agenesis: noninvasive diagnosis with dual-source computed tomography. Circulation. 2009;119:1158–60.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang LJ, Lu GM. Takayasu’s arteritis involving the pulmonary arteries: evaluation by quantitative dual-energy computed tomographic pulmonary angiography. Eur Heart J. 2012;33:928.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lu GM, Zhao Y, Zhang LJ, Schoepf UJ. Dual-energy CT of the lung. AJR Am J Roentgenol. 2012;199:S40–53.

    Article  PubMed  Google Scholar 

  15. Kerl JM, Bauer RW, Renker M, et al. Triphasic contrast injection improves evaluation of dual energy lung perfusion in pulmonary CT angiography. Eur J Radiol. 2011;80:e483–7.

    Article  PubMed  Google Scholar 

  16. Kay FU, Macedo AC, Chate RC, et al. Reduction of poor contrast enhancement of the pulmonary artery in computed tomography angiography using an alternative respiratory maneuver. J Thorac Imaging. 2014;29:107–12.

    Article  PubMed  Google Scholar 

  17. Meinel FG, Graef A, Sommer WH, Thierfelder KM, Reiser MF, Johnson TR. Influence of vascular enhancement, age and gender on pulmonary perfused blood volume quantified by dual-energy-CTPA. Eur J Radiol. 2013;82:1565–70.

    Article  PubMed  Google Scholar 

  18. Copley SJ, Giannarou S, Schmid VJ, Hansell DM, Wells AU, Yang GZ. Effect of aging on lung structure in vivo: assessment with densitometric and fractal analysis of high-resolution computed tomography data. J Thorac Imaging. 2012. doi:10.1097/RTI.0b013e31825148c9.

    PubMed  Google Scholar 

  19. Kang MJ, Park CM, Lee CH, Goo JM, Lee HJ. Focal iodine defects on color-coded iodine perfusion maps of dual-energy pulmonary CT angiography images: a potential diagnostic pitfall. AJR Am J Roentgenol. 2010;195:W325–30.

    Article  PubMed  Google Scholar 

  20. Kim BH, Seo JB, Chae EJ, Lee HJ, Hwang HJ, Lim C. Analysis of perfusion defects by causes other than acute pulmonary thromboembolism on contrast-enhanced dual-energy CT in consecutive 537 patients. Eur J Radiol. 2012;81:e647–52.

    Article  PubMed  Google Scholar 

  21. Zhang LJ, Zhao YE, Wu SY, et al. Pulmonary embolism detection with dual-energy CT: experimental study of dual-source CT in rabbits. Radiology. 2009;252:61–70.

    Article  PubMed  Google Scholar 

  22. Pontana F, Faivre JB, Remy-Jardin M, et al. Lung perfusion with dual-energy multidetector-row CT (MDCT): feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad Radiol. 2008;15:1494–504.

    Article  PubMed  Google Scholar 

  23. Wiener RS, Schwartz LM, Woloshin S. When a test is too good: how CT pulmonary angiograms find pulmonary emboli that do not need to be found. BMJ. 2013;347:f3368.

    Article  PubMed  Google Scholar 

  24. Tang CX, Zhang LJ, Han ZH, et al. Dual-energy CT based vascular iodine analysis improves sensitivity for peripheral pulmonary artery thrombus detection: an experimental study in canines. Eur J Radiol. 2013. doi:10.1016/j.ejrad.2013.06.021.

    Google Scholar 

  25. Hoey ET, Mirsadraee S, Pepke-Zaba J, Jenkins DP, Gopalan D, Screaton NJ. Dual-energy CT angiography for assessment of regional pulmonary perfusion in patients with chronic thromboembolic pulmonary hypertension: initial experience. AJR Am J Roentgenol. 2011;196:524–32.

    Article  PubMed  Google Scholar 

  26. Meinel FG, Graef A, Thierfelder KM, et al. Automated quantification of pulmonary perfused blood volume by dual-energy CTPA in chronic thromboembolic pulmonary hypertension. Rofo. 2014;186:151–6.

    CAS  PubMed  Google Scholar 

  27. Pontana F, Remy-Jardin M, Duhamel A, Faivre JB, Wallaert B, Remy J. Lung perfusion with dual-energy multi-detector row CT: can it help recognize ground glass opacities of vascular origin? Acad Radiol. 2010;17:587–94.

    Article  PubMed  Google Scholar 

  28. Renard B, Remy-Jardin M, Santangelo T, et al. Dual-energy CT angiography of chronic thromboembolic disease: can it help recognize links between the severity of pulmonary arterial obstruction and perfusion defects? Eur J Radiol. 2011;79:467–72.

    Article  PubMed  Google Scholar 

  29. Meinel FG, Graef A, Thieme SF, et al. Assessing pulmonary perfusion in emphysema: automated quantification of perfused blood volume in dual-energy CTPA. Invest Radiol. 2013;48:79–85.

    Article  PubMed  Google Scholar 

  30. Nagayama H, Sueyoshi E, Hayashida T, Ashizawa K, Sakamoto I, Uetani M. Quantification of lung perfusion blood volume (lung PBV) by dual-energy CT in pulmonary embolism before and after treatment: preliminary results. Clin Imaging. 2013;37:493–7.

    Article  PubMed  Google Scholar 

  31. Meinel FG, Graef A, Bamberg F, et al. Effectiveness of automated quantification of pulmonary perfused blood volume using dual-energy CTPA for the severity assessment of acute pulmonary embolism. Invest Radiol. 2013;48:563–9. doi:10.1097/RLI.0b013e3182879482.

    Article  CAS  PubMed  Google Scholar 

  32. Sueyoshi E, Tsutsui S, Hayashida T, Ashizawa K, Sakamoto I, Uetani M. Quantification of lung perfusion blood volume (lung PBV) by dual-energy CT in patients with and without pulmonary embolism: preliminary results. Eur J Radiol. 2011;80:e505–9.

    Article  PubMed  Google Scholar 

  33. Meinel FG, Graef A, Thierfelder KM, et al. Automated quantification of pulmonary perfused blood volume by dual-energy CTPA in chronic thromboembolic pulmonary hypertension. Rofo. 2013. doi:10.1055/s-0033-1350412.

    Google Scholar 

  34. Apfaltrer P, Bachmann V, Meyer M, et al. Prognostic value of perfusion defect volume at dual energy CTA in patients with pulmonary embolism: correlation with CTA obstruction scores, CT parameters of right ventricular dysfunction and adverse clinical outcome. Eur J Radiol. 2012;81:3592–7.

    Article  PubMed  Google Scholar 

  35. Bauer RW, Frellesen C, Renker M, et al. Dual energy CT pulmonary blood volume assessment in acute pulmonary embolism – correlation with D-dimer level, right heart strain and clinical outcome. Eur Radiol. 2011;21:1914–21.

    Article  PubMed  Google Scholar 

  36. Chandra D, Lipson DA, Hoffman EA, et al. Perfusion scintigraphy and patient selection for lung volume reduction surgery. Am J Respir Crit Care Med. 2010;182:937–46.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kong X, Sheng HX, Lu GM, et al. Xenon-enhanced dual-energy CT lung ventilation imaging: techniques and clinical applications. AJR Am J Roentgenol. 2014;202:309–17.

    Article  PubMed  Google Scholar 

  38. Park EA, Goo JM, Park SJ, et al. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique. Radiology. 2010;256:985–97.

    Article  PubMed  Google Scholar 

  39. Chae EJ, Seo JB, Lee J, et al. Xenon ventilation imaging using dual-energy computed tomography in asthmatics: initial experience. Invest Radiol. 2010;45:354–61.

    PubMed  Google Scholar 

  40. Goo HW, Yu J. Redistributed regional ventilation after the administration of a bronchodilator demonstrated on xenon-inhaled dual-energy CT in a patient with asthma. Korean J Radiol. 2011;12:386–9.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Park SJ, Lee CH, Goo JM, et al. Quantitative analysis of dynamic airway changes after methacholine and salbutamol inhalation on xenon-enhanced chest CT. Eur Radiol. 2012;22:2441–50.

    Article  PubMed  Google Scholar 

  42. Kim WW, Lee CH, Goo JM, et al. Xenon-enhanced dual-energy CT of patients with asthma: dynamic ventilation changes after methacholine and salbutamol inhalation. AJR Am J Roentgenol. 2012;199:975–81.

    Article  PubMed  Google Scholar 

  43. Goo HW, Yang DH, Hong SJ, et al. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol. 2010;40:1490–7.

    Article  PubMed  Google Scholar 

  44. Goo HW, Chae EJ, Seo JB, Hong SJ. Xenon ventilation CT using a dual-source dual-energy technique: dynamic ventilation abnormality in a child with bronchial atresia. Pediatr Radiol. 2008;38:1113–6.

    Article  PubMed  Google Scholar 

  45. Goo HW, Yang DH, Kim N, Park SI, Kim DK, Kim EA. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience. Korean J Radiol. 2011;12:25–33.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Zhang LJ, Zhou CS, Lu GM. Dual energy computed tomography demonstrated lung ventilation/perfusion mismatch in a 19-year-old patient with pulmonary embolism. Circulation. 2012;126:2441–3.

    Article  PubMed  Google Scholar 

  47. Zhang LJ, Zhou CS, Schoepf UJ, et al. Dual-energy CT lung ventilation/perfusion imaging for diagnosing pulmonary embolism. Eur Radiol. 2013;23:2666–75.

    Article  PubMed  Google Scholar 

  48. Thieme SF, Hoegl S, Nikolaou K, et al. Pulmonary ventilation and perfusion imaging with dual-energy CT. Eur Radiol. 2010;20:2882–9.

    Article  PubMed  Google Scholar 

  49. Hoegl S, Meinel FG, Thieme SF, et al. Worsening respiratory function in mechanically ventilated intensive care patients: feasibility and value of xenon-enhanced dual energy CT. Eur J Radiol. 2013;82:557–62.

    Article  PubMed  Google Scholar 

  50. Fuld MK, Halaweish AF, Newell Jr JD, Krauss B, Hoffman EA. Optimization of dual-energy xenon-computed tomography for quantitative assessment of regional pulmonary ventilation. Invest Radiol. 2013;48:629–37.

    Article  PubMed  Google Scholar 

  51. Hachulla AL, Pontana F, Wemeau-Stervinou L, et al. Krypton ventilation imaging using dual-energy CT in chronic obstructive pulmonary disease patients: initial experience. Radiology. 2012;263:253–9.

    Article  PubMed  Google Scholar 

  52. Chon D, Beck KC, Simon BA, Shikata H, Saba OI, Hoffman EA. Effect of low-xenon and krypton supplementation on signal/noise of regional CT-based ventilation measurements. J Appl Physiol. 2007;102:1535–44.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang LJ, Yang GF, Wu SY, Xu J, Lu GM, Schoepf UJ. Dual-energy CT imaging of thoracic malignancies. Cancer Imaging. 2013;13:81–91.

    Article  PubMed  Google Scholar 

  54. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology. 2008;249:671–81.

    Article  PubMed  Google Scholar 

  55. Chae EJ, Song JW, Krauss B, et al. Dual-energy computed tomography characterization of solitary pulmonary nodules. J Thorac Imaging. 2010;25:301–10.

    Article  PubMed  Google Scholar 

  56. Schmid-Bindert G, Henzler T, Chu TQ, et al. Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol. 2012;22:93–103.

    Article  CAS  PubMed  Google Scholar 

  57. Chae EJ, Kim N, Seo JB, et al. Prediction of postoperative lung function in patients undergoing lung resection: dual-energy perfusion computed tomography versus perfusion scintigraphy. Invest Radiol. 2013;48:622–7.

    Article  CAS  PubMed  Google Scholar 

  58. Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol. Invest Radiol. 2012;47:406–14.

    Article  PubMed  Google Scholar 

  59. Delesalle MA, Pontana F, Duhamel A, et al. Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology. 2013;267:256–66.

    Article  PubMed  Google Scholar 

  60. Cheng J, Yin Y, Wu H, et al. Optimal monochromatic energy levels in spectral CT pulmonary angiography for the evaluation of pulmonary embolism. PLoS One. 2013;8:e63140.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Schenzle JC, Sommer WH, Neumaier K, et al. Dual energy CT of the chest: how about the dose? Invest Radiol. 2010;45:347–53.

    PubMed  Google Scholar 

  62. Henzler T, Fink C, Schoenberg SO, Schoepf UJ. Dual-energy CT: radiation dose aspects. AJR Am J Roentgenol. 2012;199:S16–25.

    Article  PubMed  Google Scholar 

  63. De Zordo T, von Lutterotti K, Dejaco C, et al. Comparison of image quality and radiation dose of different pulmonary CTA protocols on a 128-slice CT: high-pitch dual source CT, dual energy CT and conventional spiral CT. Eur Radiol. 2012;22:279–86.

    Article  PubMed  Google Scholar 

  64. Bolen MA, Renapurkar RD, Popovic ZB, et al. High-pitch ECG-synchronized pulmonary CT angiography versus standard CT pulmonary angiography: a prospective randomized study. AJR Am J Roentgenol. 2013;201:971–6.

    Article  PubMed  Google Scholar 

  65. de Broucker T, Pontana F, Santangelo T, et al. Single- and dual-source chest CT protocols: levels of radiation dose in routine clinical practice. Diagn Interv Imaging. 2012;93:852–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Joseph Schoepf MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meinel, F.G., Zhang, L.J., Krazinski, A.W., Schoepf, U.J. (2015). Dual-Energy CT in Thoracic Imaging. In: Carrascosa, P., Cury, R., García, M., Leipsic, J. (eds) Dual-Energy CT in Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-21227-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21227-2_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21226-5

  • Online ISBN: 978-3-319-21227-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics