Skip to main content

Role of Sphingolipids in Hematological Malignancies: Myeloproliferative Disorders

  • Chapter
Bioactive Sphingolipids in Cancer Biology and Therapy

Abstract

From an historical point of view, hematological malignancies have been instrumental for the discovery of the first link between sphingolipids and their bioactive role in apoptosis and differentiation. Ever since, hematological malignancies have represented a powerful model to discover and dissect sphingolipid-related functions in the context of cell proliferation, differentiation, autophagy, immunological responses and neoplastic transformation. Moreover, more recent studies have also translated the discoveries carried out in cell culture to clinically relevant models of patient samples and/or in vivo animal models.

In the present chapter, we provide a comprehensive discussion of the roles and functions of sphingolipids and sphingolipid-metabolizing enzymes in leukemias of myeloid origins. The discussion will cover the molecular mechanisms at the basis of sphingolipid actions and the therapeutic applications of such discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771

    Article  CAS  PubMed  Google Scholar 

  2. Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264:19076–19080

    CAS  PubMed  Google Scholar 

  3. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951

    Article  CAS  PubMed  Google Scholar 

  4. American Cancer Society (2014) Cancer facts & figures 2014. American Cancer Society, Atlanta, p 2014

    Google Scholar 

  5. Rowley JD (1973) Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    Article  CAS  PubMed  Google Scholar 

  6. Nowell P, Hungerford D (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497

    Google Scholar 

  7. Bartram CR, Kleihauer E, de Klein A, Grosveld G, Teyssier JR, Heisterkamp N, Groffen J (1985) C-abl and bcr are rearranged in a Ph1-negative CML patient. EMBO J 4:683–686

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:1079–1082

    Article  CAS  PubMed  Google Scholar 

  9. Di Bacco A, Keeshan K, McKenna SL, Cotter TG (2000) Molecular abnormalities in chronic myeloid leukemia: deregulation of cell growth and apoptosis. Oncologist 5:405–415

    Article  PubMed  Google Scholar 

  10. Kantarjian HM, Deisseroth A, Kurzrock R, Estrov Z, Talpaz M (1993) Chronic myelogenous leukemia: a concise update. Blood 82:691–703

    CAS  PubMed  Google Scholar 

  11. Ohmine K, Ota J, Ueda M, Ueno S, Yoshida K, Yamashita Y, Kirito K, Imagawa S, Nakamura Y, Saito K, Akutsu M, Mitani K, Kano Y, Komatsu N, Ozawa K, Mano H (2001) Characterization of stage progression in chronic myeloid leukemia by DNA microarray with purified hematopoietic stem cells. Oncogene 20:8249–8257

    Article  CAS  PubMed  Google Scholar 

  12. Savage DG, Szydlo RM, Goldman JM (1997) Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period. Br J Haematol 96:111–116

    Article  CAS  PubMed  Google Scholar 

  13. Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ (1994) Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 83:2038–2044

    CAS  PubMed  Google Scholar 

  14. Cortez D, Kadlec L, Pendergast AM (1995) Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 15:5531–5541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cotter TG (1995) BCR-ABL: an anti-apoptosis gene in chronic myelogenous leukemia. Leuk Lymphoma 18:231–236

    Article  CAS  PubMed  Google Scholar 

  16. Evans CA, Owen-Lynch PJ, Whetton AD, Dive C (1993) Activation of the Abelson tyrosine kinase activity is associated with suppression of apoptosis in hemopoietic cells. Cancer Res 53:1735–1738

    CAS  PubMed  Google Scholar 

  17. Alenzi FQ (2012) Is there a link between apoptosis and chronic leukemia? J Cell Sci Ther 3

    Google Scholar 

  18. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG (1994) BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 83:1179–1187

    CAS  PubMed  Google Scholar 

  19. Amos TA, Lewis JL, Grand FH, Gooding RP, Goldman JM, Gordon MY (1995) Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation. X-irradiation and glucocorticoids. Br J Haematol 91:387–393

    Article  CAS  PubMed  Google Scholar 

  20. Handa H, Hegde UP, Kotelnikov VM, Mundle SD, Dong LM, Burke P, Rose S, Gaskin F, Raza A, Preisler HD (1997) Bcl-2 and c-myc expression, cell cycle kinetics and apoptosis during the progression of chronic myelogenous leukemia from diagnosis to blastic phase. Leuk Res 21:479–489

    Article  CAS  PubMed  Google Scholar 

  21. Ren R (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5:172–183

    Article  CAS  PubMed  Google Scholar 

  22. Sattler M, Salgia R (1997) Activation of hematopoietic growth factor signal transduction pathways by the human oncogene BCR/ABL. Cytokine Growth Factor Rev 8:63–79

    Article  CAS  PubMed  Google Scholar 

  23. Kabarowski JH, Allen PB, Wiedemann LM (1994) A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells. EMBO J 13:5887–5895

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Burns TA, Subathra M, Signorelli P, Choi Y, Yang X, Wang Y, Villani M, Bhalla K, Zhou D, Luberto C (2013) Sphingomyelin synthase 1 activity is regulated by the BCR-ABL oncogene[S]. J Lipid Res 54:794–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gu L, Vogiatzi P, Puhr M, Dagvadorj A, Lutz J, Ryder A, Addya S, Fortina P, Cooper C, Leiby B, Dasgupta A, Hyslop T, Bubendorf L, Alanen K, Mirtti T, Nevalainen MT (2010) Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr Relat Cancer 17:481–493

    Article  CAS  PubMed  Google Scholar 

  26. Ullman MD, Radin NS (1974) The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J Biol Chem 249:1506–1512

    CAS  PubMed  Google Scholar 

  27. Tafesse FG, Huitema K, Hermansson M, van der Poel S, van den Dikkenberg J, Uphoff A, Somerharju P, Holthuis JC (2007) Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J Biol Chem 282:17537–17547

    Article  CAS  PubMed  Google Scholar 

  28. Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F (2011) Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117:e182–e189

    Article  CAS  PubMed  Google Scholar 

  29. Perrotti D, Neviani P (2008) Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias. Cancer Metastasis Rev 27:159–168

    Article  CAS  PubMed  Google Scholar 

  30. Mukhopadhyay A, Saddoughi SA, Song P, Sultan I, Ponnusamy S, Senkal CE, Snook CF, Arnold HK, Sears RC, Hannun YA, Ogretmen B (2009) Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J 23:751–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, Mao H, Chang JS, Galietta A, Uttam A, Roy DC, Valtieri M, Bruner-Klisovic R, Caligiuri MA, Bloomfield CD, Marcucci G, Perrotti D (2005) The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 8:355–368

    Article  CAS  PubMed  Google Scholar 

  32. Perrotti D, Neviani P (2006) ReSETting PP2A tumour suppressor activity in blast crisis and imatinib-resistant chronic myelogenous leukaemia. Br J Cancer 95:775–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Azoitei N, Kleger A, Schoo N, Thal DR, Brunner C, Pusapati GV, Filatova A, Genze F, Moller P, Acker T, Kuefer R, Van Lint J, Baust H, Adler G, Seufferlein T (2011) Protein kinase D2 is a novel regulator of glioblastoma growth and tumor formation. Neuro Oncol 13:710–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cerbon J, del Carmen Lopez-Sanchez R (2003) Diacylglycerol generated during sphingomyelin synthesis is involved in protein kinase C activation and cell proliferation in Madin-Darby canine kidney cells. Biochem J 373:917–924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ellwanger, K. and Hausser, A. (2013) Physiological functions of protein kinase D in vivo. IUBMB Life

    Google Scholar 

  36. Fu Y, Rubin CS (2011) Protein kinase D: coupling extracellular stimuli to the regulation of cell physiology. EMBO Rep 12:785–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Karam M, Legay C, Auclair C, Ricort JM (2012) Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway. Exp Cell Res 318:558–569

    Article  CAS  PubMed  Google Scholar 

  38. LaValle CR, Zhang L, Xu S, Eiseman JL, Wang QJ (2012) Inducible silencing of protein kinase D3 inhibits secretion of tumor-promoting factors in prostate cancer. Mol Cancer Ther 11:1389–1399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Markova B, Albers C, Breitenbuecher F, Melo JV, Brummendorf TH, Heidel F, Lipka D, Duyster J, Huber C, Fischer T (2010) Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-gamma1-driven activation of mTOR/p70S6-kinase pathway. Oncogene 29:739–751

    Article  CAS  PubMed  Google Scholar 

  40. Meng A, Luberto C, Meier P, Bai A, Yang X, Hannun YA, Zhou D (2004) Sphingomyelin synthase as a potential target for D609-induced apoptosis in U937 human monocytic leukemia cells. Exp Cell Res 292:385–392

    Article  CAS  PubMed  Google Scholar 

  41. Onishi Y, Kawamoto T, Kishimoto K, Hara H, Fukase N, Toda M, Harada R, Kurosaka M, Akisue T (2012) PKD1 negatively regulates cell invasion, migration and proliferation ability of human osteosarcoma. Int J Oncol 40:1839–1848

    CAS  PubMed  Google Scholar 

  42. Shabelnik MY, Kovalevska LM, Yurchenko MY, Shlapatska LM, Rzepetsky Y, Sidorenko SP (2011) Differential expression of PKD1 and PKD2 in gastric cancer and analysis of PKD1 and PKD2 function in the model system. Exp Oncol 33:206–211

    CAS  PubMed  Google Scholar 

  43. Subathra M, Qureshi A, Luberto C (2011) Sphingomyelin synthases regulate protein trafficking and secretion. PLoS One 6, e23644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sundram V, Chauhan SC, Jaggi M (2011) Emerging roles of protein kinase D1 in cancer. Mol Cancer Res 9:985–996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Valverde AM, Sinnett-Smith J, Van Lint J, Rozengurt E (1994) Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci U S A 91:8572–8576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC (2007) Sphingolipids and cell death. Apoptosis 12:923–939

    Article  CAS  PubMed  Google Scholar 

  47. Kolesnick R, Hannun YA (1999) Ceramide and apoptosis. Trends Biochem Sci 24:224–225

    Article  CAS  PubMed  Google Scholar 

  48. Hannun YA, Obeid LM (2002) The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277:25847–25850

    Article  CAS  PubMed  Google Scholar 

  49. Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585:114–125

    Article  CAS  PubMed  Google Scholar 

  50. Ruvolo PP (2001) Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia 15:1153–1160

    Article  CAS  PubMed  Google Scholar 

  51. Maguer-Satta V, Burl S, Liu L, Damen J, Chahine H, Krystal G, Eaves A, Eaves C (1998) BCR-ABL accelerates C2-ceramide-induced apoptosis. Oncogene 16(2):237–248

    Article  CAS  PubMed  Google Scholar 

  52. Maguer-Satta V (1998) CML and apoptosis: the ceramide pathway. Hematol Cell Ther 40:233–236

    CAS  PubMed  Google Scholar 

  53. Amarante-Mendes GP, Naekyung Kim C, Liu L, Huang Y, Perkins CL, Green DR, Bhalla K (1998) Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 91:1700–1705

    CAS  PubMed  Google Scholar 

  54. Domina AM, Vrana JA, Gregory MA, Hann SR, Craig RW (2004) MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene 23:5301–5315

    Article  CAS  PubMed  Google Scholar 

  55. Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR (2006) Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21:749–760

    Article  CAS  PubMed  Google Scholar 

  56. Nica AF, Tsao CC, Watt JC, Jiffar T, Kurinna S, Jurasz P, Konopleva M, Andreeff M, Radomski MW, Ruvolo PP (2008) Ceramide promotes apoptosis in chronic myelogenous leukemia-derived K562 cells by a mechanism involving caspase-8 and JNK. Cell Cycle 7:3362–3370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. McGahon AJ, Nishioka WK, Martin SJ, Mahboubi A, Cotter TG, Green DR (1995) Regulation of the Fas apoptotic cell death pathway by Abl. J Biol Chem 270:22625–22631

    Article  CAS  PubMed  Google Scholar 

  58. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 289:1938–1942

    Article  CAS  PubMed  Google Scholar 

  59. Baran Y, Salas A, Senkal CE, Gunduz U, Bielawski J, Obeid LM, Ogretmen B (2007) Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J Biol Chem 282:10922–10934

    Article  CAS  PubMed  Google Scholar 

  60. Bonhoure E, Lauret A, Barnes DJ, Martin C, Malavaud B, Kohama T, Melo JV, Cuvillier O (2008) Sphingosine kinase-1 is a downstream regulator of imatinib-induced apoptosis in chronic myeloid leukemia cells. Leukemia 22:971–979

    Article  CAS  PubMed  Google Scholar 

  61. Gencer EB, Ural AU, Avcu F, Baran Y (2011) A novel mechanism of dasatinib-induced apoptosis in chronic myeloid leukemia; ceramide synthase and ceramide clearance genes. Ann Hematol 90:1265–1275

    Article  CAS  PubMed  Google Scholar 

  62. Camgoz A, Gencer EB, Ural AU, Avcu F, Baran Y (2011) Roles of ceramide synthase and ceramide clearance genes in nilotinib-induced cell death in chronic myeloid leukemia cells. Leuk Lymphoma 52:1574–1584

    Article  CAS  PubMed  Google Scholar 

  63. Beverly LJ, Howell LA, Hernandez-Corbacho M, Casson L, Chipuk JE, Siskind LJ (2013) BAK activation is necessary and sufficient to drive ceramide synthase-dependent ceramide accumulation following inhibition of BCL2-like proteins. Biochem J 452:111–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Hu X, Yang D, Zimmerman M, Liu F, Yang J, Kannan S, Burchert A, Szulc Z, Bielawska A, Ozato K, Bhalla K, Liu K (2011) IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res 71:2882–2891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Waight JD, Banik D, Griffiths EA, Nemeth MJ, Abrams SI (2014) Regulation of the interferon regulatory factor-8 (IRF-8) tumor suppressor gene by the signal transducer and activator of transcription 5 (STAT5) transcription factor in chronic myeloid leukemia. J Biol Chem 289:15642–15652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Schmidt M, Nagel S, Proba J, Thiede C, Ritter M, Waring JF, Rosenbauer F, Huhn D, Wittig B, Horak I, Neubauer A (1998) Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 91:22–29

    CAS  PubMed  Google Scholar 

  67. Maceyka M, Payne SG, Milstien S, Spiegel S (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585:193–201

    Article  CAS  PubMed  Google Scholar 

  68. Li QF, Huang WR, Duan HF, Wang H, Wu CT, Wang LS (2007) Sphingosine kinase-1 mediates BCR/ABL-induced upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene 26:7904–7908

    Article  CAS  PubMed  Google Scholar 

  69. Zhou P, Qian L, Kozopas KM, Craig RW (1997) Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 89:630–643

    CAS  PubMed  Google Scholar 

  70. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K, Korsmeyer SJ (2005) Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 307:1101–1104

    Article  CAS  PubMed  Google Scholar 

  71. Jendiroba DB, Klostergaard J, Keyhani A, Pagliaro L, Freireich EJ (2002) Effective cytotoxicity against human leukemias and chemotherapy-resistant leukemia cell lines by N-N-dimethylsphingosine. Leuk Res 26:301–310

    Article  CAS  PubMed  Google Scholar 

  72. Taouji S, Higa A, Delom F, Palcy S, Mahon FX, Pasquet JM, Bosse R, Segui B, Chevet E (2013) Phosphorylation of serine palmitoyltransferase long chain-1 (SPTLC1) on tyrosine 164 inhibits its activity and promotes cell survival. J Biol Chem 288:17190–17201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J, Cervantes F, Deininger M, Gratwohl A, Guilhot F, Hochhaus A, Horowitz M, Hughes T, Kantarjian H, Larson R, Radich J, Simonsson B, Silver RT, Goldman J, Hehlmann R (2009) Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol 27:6041–6051

    Article  CAS  PubMed  Google Scholar 

  74. O'Brien S, Berman E, Borghaei H, Deangelo DJ, Devetten MP, Devine S, Erba HP, Gotlib J, Jagasia M, Moore JO, Mughal T, Pinilla-Ibarz J, Radich JP, Shah Md NP, Shami PJ, Smith BD, Snyder DS, Tallman MS, Talpaz M, Wetzler M (2009) NCCN clinical practice guidelines in oncology: chronic myelogenous leukemia. J Natl Compr Canc Netw 7:984–1023

    PubMed  Google Scholar 

  75. O'Brien SG, Guilhot F, Goldman JM et al (2008) International randomized study of interferon versus STI571 (IRIS) 7-year follow-up: sustained survival, low rate of transformation and increased rate of major molecular response (MMR) in patients (pts) with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with Imatinib (IM). Blood 112(11):76

    Google Scholar 

  76. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121:396–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Barnes DJ, Melo JV (2006) Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemia. Cell Cycle 5:2862–2866

    Article  CAS  PubMed  Google Scholar 

  78. Krystal GW (2001) Mechanisms of resistance to imatinib (STI571) and prospects for combination with conventional chemotherapeutic agents. Drug Resist Updat 4:16–21

    Article  CAS  PubMed  Google Scholar 

  79. Perrotti D, Jamieson C, Goldman J, Skorski T (2010) Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 120:2254–2264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Skorski T (2012) Genetic mechanisms of chronic myeloid leukemia blastic transformation. Curr Hematol Malig Rep 7:87–93

    Article  PubMed  Google Scholar 

  81. Walz C, Sattler M (2006) Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol 57:145–164

    Article  PubMed  Google Scholar 

  82. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417

    Article  CAS  PubMed  Google Scholar 

  83. Hochhaus A, O'Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, Goldman JM, Muller MC, Radich JP, Rudoltz M, Mone M, Gathmann I, Hughes TP, Larson RA (2009) Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 23:1054–1061

    Article  CAS  PubMed  Google Scholar 

  84. Jain P, Kantarjian H, Cortes J (2013) Chronic myeloid leukemia: overview of new agents and comparative analysis. Curr Treat Options Oncol 14:127–143

    Article  PubMed  Google Scholar 

  85. Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT, Tura S, Fischer T, Deininger MW, Schiffer CA, Baccarani M, Gratwohl A, Hochhaus A, Hoelzer D, Fernandes-Reese S, Gathmann I, Capdeville R, O'Brien SG (2002) A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 100:1965–1971

    Article  CAS  PubMed  Google Scholar 

  86. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, Schiffer CA, Talpaz M, Guilhot F, Deininger MW, Fischer T, O'Brien SG, Stone RM, Gambacorti-Passerini CB, Russell NH, Reiffers JJ, Shea TC, Chapuis B, Coutre S, Tura S, Morra E, Larson RA, Saven A, Peschel C, Gratwohl A, Mandelli F, Ben-Am M, Gathmann I, Capdeville R, Paquette RL, Druker BJ (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99:3530–3539

    Article  CAS  PubMed  Google Scholar 

  87. Baran Y, Bielawski J, Gunduz U, Ogretmen B (2011) Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res Clin Oncol 137:1535–1544

    Article  CAS  PubMed  Google Scholar 

  88. Huang WC, Tsai CC, Chen CL, Chen TY, Chen YP, Lin YS, Lu PJ, Lin CM, Wang SH, Tsao CW, Wang CY, Cheng YL, Hsieh CY, Tseng PC, Lin CF (2011) Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J 25:3661–3673

    Article  CAS  PubMed  Google Scholar 

  89. Ding Q, He X, Xia W, Hsu JM, Chen CT, Li LY, Lee DF, Yang JY, Xie X, Liu JC, Hung MC (2007) Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3beta activity and associates with poor prognosis in human breast cancer. Cancer Res 67:4564–4571

    Article  CAS  PubMed  Google Scholar 

  90. Luo J (2009) Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett 273:194–200

    Article  CAS  PubMed  Google Scholar 

  91. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A (2009) Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156:885–898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Huang WC, Lin YS, Chen CL, Wang CY, Chiu WH, Lin CF (2009) Glycogen synthase kinase-3beta mediates endoplasmic reticulum stress-induced lysosomal apoptosis in leukemia. J Pharmacol Exp Ther 329:524–531

    Article  CAS  PubMed  Google Scholar 

  93. Lin CF, Chen CL, Chiang CW, Jan MS, Huang WC, Lin YS (2007) GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. J Cell Sci 120:2935–2943

    Article  CAS  PubMed  Google Scholar 

  94. Kartal M, Saydam G, Sahin F, Baran Y (2011) Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. Nutr Cancer 63:637–644

    Article  CAS  PubMed  Google Scholar 

  95. Salas A, Ponnusamy S, Senkal CE, Meyers-Needham M, Selvam SP, Saddoughi SA, Apohan E, Sentelle RD, Smith C, Gault CR, Obeid LM, El-Shewy HM, Oaks J, Santhanam R, Marcucci G, Baran Y, Mahajan S, Fernandes D, Stuart R, Perrotti D, Ogretmen B (2011) Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A. Blood 117:5941–5952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Camgoz A, Gencer EB, Ural AU, Baran Y (2013) Mechanisms responsible for nilotinib resistance in human chronic myeloid leukemia cells and reversal of resistance. Leuk Lymphoma 54:1279–1287

    Article  CAS  PubMed  Google Scholar 

  97. Matsuoka Y, Nagahara Y, Ikekita M, Shinomiya T (2003) A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. Br J Pharmacol 138:1303–1312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW, Liu S, Trotta R, Muthusamy N, Gambacorti-Passerini C, Druker BJ, Cortes J, Marcucci G, Chen CS, Verrills NM, Roy DC, Caligiuri MA, Bloomfield CD, Byrd JC, Perrotti D (2007) FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 117:2408–2421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Perrotti D, Neviani P (2013) Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol 14:e229–e238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Lahiri S, Park H, Laviad EL, Lu X, Bittman R, Futerman AH (2009) Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-dependent manner. J Biol Chem 284(24):16090–16098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Oaks JJ, Santhanam R, Walker CJ, Roof S, Harb JG, Ferenchak G, Eisfeld AK, Van Brocklyn JR, Briesewitz R, Saddoughi SA, Nagata K, Bittman R, Caligiuri MA, Abdel-Wahab O, Levine R, Arlinghaus RB, Quintas-Cardama A, Goldman JM, Apperley J, Reid A, Milojkovic D, Ziolo MT, Marcucci G, Ogretmen B, Neviani P, Perrotti D (2013) Antagonistic activities of the immunomodulator and PP2A-activating drug FTY720 (Fingolimod, Gilenya) in Jak2-driven hematologic malignancies. Blood 122:1923–1934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Ono Y, Kurano M, Ohkawa R, Yokota H, Igarashi K, Aoki J, Tozuka M, Yatomi Y (2013) Sphingosine 1-phosphate release from platelets during clot formation: close correlation between platelet count and serum sphingosine 1-phosphate concentration. Lipids Health Dis 12:20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Sobue S, Iwasaki T, Sugisaki C, Nagata K, Kikuchi R, Murakami M, Takagi A, Kojima T, Banno Y, Akao Y, Nozawa Y, Kannagi R, Suzuki M, Abe A, Naoe T, Murate T (2006) Quantitative RT-PCR analysis of sphingolipid metabolic enzymes in acute leukemia and myelodysplastic syndromes. Leukemia 20:2042–2046

    Article  CAS  PubMed  Google Scholar 

  104. Schlenk RF, Dohner H (2013) Genomic applications in the clinic: use in treatment paradigm of acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2013:324–330

    Article  PubMed  Google Scholar 

  105. Murate T, Suzuki M, Hattori M, Takagi A, Kojima T, Tanizawa T, Asano H, Hotta T, Saito H, Yoshida S, Tamiya-Koizumi K (2002) Up-regulation of acid sphingomyelinase during retinoic acid-induced myeloid differentiation of NB4, a human acute promyelocytic leukemia cell line. J Biol Chem 277:9936–9943

    Article  CAS  PubMed  Google Scholar 

  106. Bertolaso L, Gibellini D, Secchiero P, Previati M, Falgione D, Visani G, Rizzoli R, Capitani S, Zauli G (1998) Accumulation of catalytically active PKC-zeta into the nucleus of HL-60 cell line plays a key role in the induction of granulocytic differentiation mediated by all-trans retinoic acid. Br J Haematol 100:541–549

    Article  CAS  PubMed  Google Scholar 

  107. Yung BY, Hui EK (1993) Differential regulation of protein kinase C isoenzymes during sphinganine potentiation of retinoic acid-induced granulocytic differentiation in human leukemia HL-60 cells. Biochem Biophys Res Commun 196:1390–1400

    Article  CAS  PubMed  Google Scholar 

  108. Yung BY, Luo KJ, Hui EK (1992) Interaction of antileukemia agents adriamycin and daunomycin with sphinganine on the differentiation of human leukemia cell line HL-60. Cancer Res 52:3593–3597

    CAS  PubMed  Google Scholar 

  109. Yung BY, Hsiao TF, Wei LL, Hui EK (1994) Sphinganine potentiation of dimethyl sulfoxide-induced granulocyte differentiation, increase of alkaline phosphatase activity and decrease of protein kinase C activity in a human leukemia cell line (HL-60). Biochem Biophys Res Commun 199:888–896

    Article  CAS  PubMed  Google Scholar 

  110. Merrill AH Jr, Sereni AM, Stevens VL, Hannun YA, Bell RM, Kinkade JM Jr (1986) Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. J Biol Chem 261:12610–12615

    CAS  PubMed  Google Scholar 

  111. Kolesnick RN (1989) Sphingomyelinase action inhibits phorbol ester-induced differentiation of human promyelocytic leukemic (HL-60) cells. J Biol Chem 264:7617–7623

    CAS  PubMed  Google Scholar 

  112. Kan CC, Kolesnick RN (1992) A synthetic ceramide analog, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, selectively inhibits adherence during macrophage differentiation of human leukemia cells. J Biol Chem 267:9663–9667

    CAS  PubMed  Google Scholar 

  113. Nojiri H, Takaku F, Terui Y, Miura Y, Saito M (1986) Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937. Proc Natl Acad Sci U S A 83:782–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Stevens VL, Winton EF, Smith EE, Owens NE, Kinkade JM Jr, Merrill AH Jr (1989) Differential effects of long-chain (sphingoid) bases on the monocytic differentiation of human leukemia (HL-60) cells induced by phorbol esters, 1 alpha, 25-dihydroxyvitamin D3, or ganglioside GM3. Cancer Res 49:3229–3234

    CAS  PubMed  Google Scholar 

  115. Kim MY, Linardic C, Obeid L, Hannun Y (1991) Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem 266:484–489

    CAS  PubMed  Google Scholar 

  116. Okazaki T, Bielawska A, Bell RM, Hannun YA (1990) Role of ceramide as a lipid mediator of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem 265:15823–15831

    CAS  PubMed  Google Scholar 

  117. Visnjic D, Batinic D, Banfic H (1997) Arachidonic acid mediates interferon-gamma-induced sphingomyelin hydrolysis and monocytic marker expression in HL-60 cell line. Blood 89:81–91

    CAS  PubMed  Google Scholar 

  118. Kim DS, Kim SH, Song JH, Chang YT, Hwang SY, Kim TS (2007) Enhancing effects of ceramide derivatives on 1,25-dihydroxyvitamin D(3)-induced differentiation of human HL-60 leukemia cells. Life Sci 81:1638–1644

    Article  CAS  PubMed  Google Scholar 

  119. Kim WJ, Okimoto RA, Purton LE, Goodwin M, Haserlat SM, Dayyani F, Sweetser DA, McClatchey AI, Bernard OA, Look AT, Bell DW, Scadden DT, Haber DA (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood 111:4716–4722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Buehrer BM, Bardes ES, Bell RM (1996) Protein kinase C-dependent regulation of human erythroleukemia (HEL) cell sphingosine kinase activity. Biochim Biophys Acta 1303:233–242

    Article  PubMed  Google Scholar 

  121. Nakade Y, Banno Y, T-Koizumi K, Hagiwara K, Sobue S, Koda M, Suzuki M, Kojima T, Takagi A, Asano H, Nozawa Y, Murate T (2003) Regulation of sphingosine kinase 1 gene expression by protein kinase C in a human leukemia cell line, MEG-O1. Biochim Biophys Acta 1635:104–116

    Article  CAS  PubMed  Google Scholar 

  122. Jarvis WD, Fornari FA Jr, Browning JL, Gewirtz DA, Kolesnick RN, Grant S (1994) Attenuation of ceramide-induced apoptosis by diglyceride in human myeloid leukemia cells. J Biol Chem 269:31685–31692

    CAS  PubMed  Google Scholar 

  123. Bartova E, Spanova A, Janakova L, Bobkova M, Rittich B (1997) Apoptotic damage of DNA in human leukaemic HL-60 cells treated with C2-ceramide was detected after G1 blockade of the cell cycle. Physiol Res 46:155–160

    CAS  PubMed  Google Scholar 

  124. Jarvis WD, Kolesnick RN, Fornari FA, Traylor RS, Gewirtz DA, Grant S (1994) Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci U S A 91:73–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Sawai H, Okazaki T, Yamamoto H, Okano H, Takeda Y, Tashima M, Sawada H, Okuma M, Ishikura H, Umehara H et al (1995) Requirement of AP-1 for ceramide-induced apoptosis in human leukemia HL-60 cells. J Biol Chem 270:27326–27331

    Article  CAS  PubMed  Google Scholar 

  126. Jarvis WD, Fornari FA Jr, Auer KL, Freemerman AJ, Szabo E, Birrer MJ, Johnson CR, Barbour SE, Dent P, Grant S (1997) Coordinate regulation of stress- and mitogen-activated protein kinases in the apoptotic actions of ceramide and sphingosine. Mol Pharmacol 52:935–947

    CAS  PubMed  Google Scholar 

  127. Westwick JK, Bielawska AE, Dbaibo G, Hannun YA, Brenner DA (1995) Ceramide activates the stress-activated protein kinases. J Biol Chem 270:22689–22692

    Article  CAS  PubMed  Google Scholar 

  128. Yamamoto H (1995) Interrelation of differentiation, proliferation and apoptosis in cancer cells. J Osaka Dent Univ 29:51–60

    CAS  PubMed  Google Scholar 

  129. Chen M, Quintans J, Fuks Z, Thompson C, Kufe DW, Weichselbaum RR (1995) Suppression of Bcl-2 messenger RNA production may mediate apoptosis after ionizing radiation, tumor necrosis factor alpha, and ceramide. Cancer Res 55:991–994

    CAS  PubMed  Google Scholar 

  130. Zhang QH, Sheng HP, Loh TT (1999) Redistribution of cytochrome c is not an essential requirement in C2-ceramide induced apoptosis in HL-60 cells. Life Sci 65:1715–1723

    Article  CAS  PubMed  Google Scholar 

  131. Kim WH, Ghil KC, Lee JH, Yeo SH, Chun YJ, Choi KH, Kim DK, Kim MY (2000) Involvement of p27(kip1) in ceramide-mediated apoptosis in HL-60 cells. Cancer Lett 151:39–48

    Article  CAS  PubMed  Google Scholar 

  132. Kim HJ, Ghil KC, Kim MS, Yeo SH, Chun YJ, Kim MY (2005) Potentiation of ceramide-induced apoptosis by p27kip1 overexpression. Arch Pharm Res 28:87–92

    Article  CAS  PubMed  Google Scholar 

  133. Kim HJ, Mun JY, Chun YJ, Choi KH, Kim MY (2001) Bax-dependent apoptosis induced by ceramide in HL-60 cells. FEBS Lett 505:264–268

    Article  CAS  PubMed  Google Scholar 

  134. Kim HJ, Oh JE, Kim SW, Chun YJ, Kim MY (2008) Ceramide induces p38 MAPK-dependent apoptosis and Bax translocation via inhibition of Akt in HL-60 cells. Cancer Lett 260:88–95

    Article  CAS  PubMed  Google Scholar 

  135. Wolff RA, Dobrowsky RT, Bielawska A, Obeid LM, Hannun YA (1994) Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 269:19605–19609

    CAS  PubMed  Google Scholar 

  136. Kondo T, Kitano T, Iwai K, Watanabe M, Taguchi Y, Yabu T, Umehara H, Domae N, Uchiyama T, Okazaki T (2002) Control of ceramide-induced apoptosis by IGF-1: involvement of PI-3 kinase, caspase-3 and catalase. Cell Death Differ 9:682–692

    Article  CAS  PubMed  Google Scholar 

  137. Kondo T, Suzuki Y, Kitano T, Iwai K, Watanabe M, Umehara H, Daido N, Domae N, Tashima M, Uchiyama T, Okazaki T (2002) Vesnarinone causes oxidative damage by inhibiting catalase function through ceramide action in myeloid cell apoptosis. Mol Pharmacol 61:620–627

    Article  CAS  PubMed  Google Scholar 

  138. Son JH, Yoo HH, Kim DH (2007) Activation of de novo synthetic pathway of ceramides is responsible for the initiation of hydrogen peroxide-induced apoptosis in HL-60 cells. J Toxicol Environ Health A 70:1310–1318

    Article  CAS  PubMed  Google Scholar 

  139. Turzanski J, Grundy M, Shang S, Russell N, Pallis M (2005) P-glycoprotein is implicated in the inhibition of ceramide-induced apoptosis in TF-1 acute myeloid leukemia cells by modulation of the glucosylceramide synthase pathway. Exp Hematol 33:62–72

    Article  CAS  PubMed  Google Scholar 

  140. Jaffrezou JP, Levade T, Bettaieb A, Andrieu N, Bezombes C, Maestre N, Vermeersch S, Rousse A, Laurent G (1996) Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J 15:2417–2424

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Mansat V, Bettaieb A, Levade T, Laurent G, Jaffrezou JP (1997) Serine protease inhibitors block neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin. FASEB J 11:695–702

    CAS  PubMed  Google Scholar 

  142. Mansat V, Laurent G, Levade T, Bettaieb A, Jaffrezou JP (1997) The protein kinase C activators phorbol esters and phosphatidylserine inhibit neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin. Cancer Res 57:5300–5304

    CAS  PubMed  Google Scholar 

  143. Grazide S, Terrisse AD, Lerouge S, Laurent G, Jaffrezou JP (2004) Cytoprotective effect of glucosylceramide synthase inhibition against daunorubicin-induced apoptosis in human leukemic cell lines. J Biol Chem 279:18256–18261

    Article  CAS  PubMed  Google Scholar 

  144. Kawase M, Watanabe M, Kondo T, Yabu T, Taguchi Y, Umehara H, Uchiyama T, Mizuno K, Okazaki T (2002) Increase of ceramide in adriamycin-induced HL-60 cell apoptosis: detection by a novel anti-ceramide antibody. Biochim Biophys Acta 1584:104–114

    Article  CAS  PubMed  Google Scholar 

  145. Strum JC, Small GW, Pauig SB, Daniel LW (1994) 1-Beta-D-Arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells. J Biol Chem 269:15493–15497

    CAS  PubMed  Google Scholar 

  146. Jarvis WD, Fornari FA Jr, Tombes RM, Erukulla RK, Bittman R, Schwartz GK, Dent P, Grant S (1998) Evidence for involvement of mitogen-activated protein kinase, rather than stress-activated protein kinase, in potentiation of 1-beta-D-arabinofuranosylcytosine-induced apoptosis by interruption of protein kinase C signaling. Mol Pharmacol 54:844–856

    CAS  PubMed  Google Scholar 

  147. de Souza AC, Kodach L, Gadelha FR, Bos CL, Cavagis AD, Aoyama H, Peppelenbosch MP, Ferreira CV (2006) A promising action of riboflavin as a mediator of leukaemia cell death. Apoptosis 11:1761–1771

    Article  CAS  PubMed  Google Scholar 

  148. Yun SH, Park ES, Shin SW, Na YW, Han JY, Jeong JS, Shastina VV, Stonik VA, Park JI, Kwak JY (2012) Stichoposide C induces apoptosis through the generation of ceramide in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin Cancer Res 18:5934–5948

    Article  CAS  PubMed  Google Scholar 

  149. Dbaibo GS, Kfoury Y, Darwiche N, Panjarian S, Kozhaya L, Nasr R, Abdallah M, Hermine O, El-Sabban M, de The H, Bazarbachi A (2007) Arsenic trioxide induces accumulation of cytotoxic levels of ceramide in acute promyelocytic leukemia and adult T-cell leukemia/lymphoma cells through de novo ceramide synthesis and inhibition of glucosylceramide synthase activity. Haematologica 92:753–762

    Article  CAS  PubMed  Google Scholar 

  150. Jiang L, Pan X, Chen Y, Wang K, Du Y, Zhang J (2011) Preferential involvement of both ROS and ceramide in fenretinide-induced apoptosis of HL60 rather than NB4 and U937 cells. Biochem Biophys Res Commun 405:314–318

    Article  CAS  PubMed  Google Scholar 

  151. Senchenkov A, Han TY, Wang H, Frankel AE, Kottke TJ, Kaufmann SH, Cabot MC (2001) Enhanced ceramide generation and induction of apoptosis in human leukemia cells exposed to DT(388)-granulocyte-macrophage colony-stimulating factor (GM-CSF), a truncated diphtheria toxin fused to human GM-CSF. Blood 98:1927–1934

    Article  CAS  PubMed  Google Scholar 

  152. Frankel AE, Powell BL, Hall PD, Case LD, Kreitman RJ (2002) Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin Cancer Res 8:1004–1013

    CAS  PubMed  Google Scholar 

  153. Rahmani M, Reese E, Dai Y, Bauer C, Payne SG, Dent P, Spiegel S, Grant S (2005) Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 65:2422–2432

    Article  CAS  PubMed  Google Scholar 

  154. Chen L, Luo LF, Lu J, Li L, Liu YF, Wang J, Liu H, Song H, Jiang H, Chen SJ, Luo C, Li KK (2014) FTY720 induces apoptosis of M2 subtype acute myeloid leukemia cells by targeting sphingolipid metabolism and increasing endogenous ceramide levels. PLoS One 9, e103033

    Article  PubMed Central  PubMed  Google Scholar 

  155. Bruno AP, Laurent G, Averbeck D, Demur C, Bonnet J, Bettaieb A, Levade T, Jaffrezou JP (1998) Lack of ceramide generation in TF-1 human myeloid leukemic cells resistant to ionizing radiation. Cell Death Differ 5:172–182

    Article  CAS  PubMed  Google Scholar 

  156. Ohta H, Sweeney EA, Masamune A, Yatomi Y, Hakomori S, Igarashi Y (1995) Induction of apoptosis by sphingosine in human leukemic HL-60 cells: a possible endogenous modulator of apoptotic DNA fragmentation occurring during phorbol ester-induced differentiation. Cancer Res 55:691–697

    CAS  PubMed  Google Scholar 

  157. Jarvis WD, Fornari FA, Traylor RS, Martin HA, Kramer LB, Erukulla RK, Bittman R, Grant S (1996) Induction of apoptosis and potentiation of ceramide-mediated cytotoxicity by sphingoid bases in human myeloid leukemia cells. J Biol Chem 271:8275–8284

    Article  CAS  PubMed  Google Scholar 

  158. Sweeney EA, Sakakura C, Shirahama T, Masamune A, Ohta H, Hakomori S, Igarashi Y (1996) Sphingosine and its methylated derivative N, N-dimethylsphingosine (DMS) induce apoptosis in a variety of human cancer cell lines. Int J Cancer 66:358–366

    Article  CAS  PubMed  Google Scholar 

  159. Suzuki E, Handa K, Toledo MS, Hakomori S (2004) Sphingosine-dependent apoptosis: a unified concept based on multiple mechanisms operating in concert. Proc Natl Acad Sci U S A 101:14788–14793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Sweeney EA, Inokuchi J, Igarashi Y (1998) Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide. FEBS Lett 425:61–65

    Article  CAS  PubMed  Google Scholar 

  161. Tan KB, Ling LU, Bunte RM, Chng WJ, Chiu GN (2012) In vivo efficacy of a novel liposomal formulation of safingol in the treatment of acute myeloid leukemia. J Control Release 160:290–298

    Article  CAS  PubMed  Google Scholar 

  162. Tan KB, Ling LU, Bunte RM, Chng WJ, Chiu GN (2013) Liposomal codelivery of a synergistic combination of bioactive lipids in the treatment of acute myeloid leukemia. Nanomedicine (Lond) 9:1665–1679

    Article  CAS  Google Scholar 

  163. Kleuser B, Cuvillier O, Spiegel S (1998) 1Alpha,25-dihydroxyvitamin D3 inhibits programmed cell death in HL-60 cells by activation of sphingosine kinase. Cancer Res 58:1817–1824

    CAS  PubMed  Google Scholar 

  164. Cuvillier O, Levade T (2001) Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood 98:2828–2836

    Article  CAS  PubMed  Google Scholar 

  165. Paugh SW, Paugh BS, Rahmani M, Kapitonov D, Almenara JA, Kordula T, Milstien S, Adams JK, Zipkin RE, Grant S, Spiegel S (2008) A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112:1382–1391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Dick TE, Hengst JA, Fox TE, Colledge AL, Kale VP, Sung SS, Sharma A, Amin S, Loughran TP Jr, Kester M, Wang HG, Yun JK (2015) The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines. J Pharmacol Exp Ther 352:494–508

    Article  PubMed  CAS  Google Scholar 

  167. Le Scolan E, Pchejetski D, Banno Y, Denis N, Mayeux P, Vainchenker W, Levade T, Moreau-Gachelin F (2005) Overexpression of sphingosine kinase 1 is an oncogenic event in erythroleukemic progression. Blood 106:1808–1816

    Article  PubMed  CAS  Google Scholar 

  168. Itoh M, Kitano T, Watanabe M, Kondo T, Yabu T, Taguchi Y, Iwai K, Tashima M, Uchiyama T, Okazaki T (2003) Possible role of ceramide as an indicator of chemoresistance: decrease of the ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase in chemoresistant leukemia. Clin Cancer Res 9:415–423

    CAS  PubMed  Google Scholar 

  169. Yakushiji K, Sawai H, Kawai S, Kambara M, Domae N (2003) Characterization of C2-ceramide-resistant HL-60 subline (HL-CR): involvement of PKC delta in C2-ceramide resistance. Exp Cell Res 286:396–402

    Article  CAS  PubMed  Google Scholar 

  170. Sawai H, Kawai S, Domae N (2004) Reduced expression of Bax in ceramide-resistant HL-60 subline. Biochem Biophys Res Commun 319:46–49

    Article  CAS  PubMed  Google Scholar 

  171. Sietsma H, Veldman RJ, Kolk D, Ausema B, Nijhof W, Kamps W, Vellenga E, Kok JW (2000) 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitizes neuroblastoma cells for taxol and vincristine. Clin Cancer Res 6:942–948

    CAS  PubMed  Google Scholar 

  172. Plo I, Lehne G, Beckstrom KJ, Maestre N, Bettaieb A, Laurent G, Lautier D (2002) Influence of ceramide metabolism on P-glycoprotein function in immature acute myeloid leukemia KG1a cells. Mol Pharmacol 62:304–312

    Article  CAS  PubMed  Google Scholar 

  173. Bonhoure E, Pchejetski D, Aouali N, Morjani H, Levade T, Kohama T, Cuvillier O (2006) Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20:95–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work is partly supported by NCI grant P01 CA097132 to CL and by the “Scholars in Biomedical Sciences” fellowship from Stony Brook University, School of Medicine to SM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Luberto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moorthi, S., Luberto, C. (2015). Role of Sphingolipids in Hematological Malignancies: Myeloproliferative Disorders. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_3

Download citation

Publish with us

Policies and ethics