Skip to main content

Abstract

Roots are considered as a “brain” of a plant, with apical meristems pointed as command centers of an organism. Besides nutrient and water uptake, roots act as organs decisive and responsive for environmental factors. Dynamic reorganization of root growth and architecture in reaction to various stressors is commonly observed. Self-recognition and plants’ ability to identify neighbors are manifested by root movement. Root physiology is strictly controlled by diverse agents including phytohormones, reactive oxygen species (ROS), and reactive nitrogen species (RNS). ROS and RNS as molecules of bimodal function are known as cellular messengers crucial for regulation of fundamental physiological processes. Most of them depend on auxins; thus, auxin–ROS–RNS cross talk seems to be a typical pattern in root response to different stimuli. This chapter presents information on ROS and RNS contribution in regulation of root movement, growth, and development, described on the basis of auxin and abscisic acid action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Airaki M, Leterrier M, Valderrama R, Chaki M, Begara-Morales JC, Barroso JB, del Rio LA, Palma JM, Corpas FJ (2015) Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings. Ann Bot. doi:10.1093/aob/mcv023

    PubMed  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2010) Root apex transition zone: a signalling-response nexus in the root. Trends Plant Sci 15:402–408

    Article  PubMed  Google Scholar 

  • Baluška F, Mancuso S (2009) Plant-environment interactions: from sensory plant biology to active plant. In: Baluska F, Vivanco J (eds) Signaling and communication in plants. Springer, Berlin

    Google Scholar 

  • Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signaling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot 94:73–88

    Article  CAS  Google Scholar 

  • Begara-Morales JC, Sanchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Böhm FMLZ, Ferrarese MLL, Zanardo DIL, Magalhaes JR, Ferrarese-Filho O (2010) Nitric oxide affecting root growth, lignification and related enzymes in soybean seedlings. Acta Physiol Planta 32:1039–1046

    Article  Google Scholar 

  • Carol RJ, Dolan L (2006) The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot 57:1829–1834

    Article  CAS  PubMed  Google Scholar 

  • Causin HF, Roqueiro G, Petrillo E, Lainez V, Pena LB, Marchetti CF, Gallego SM, Maldonado SL (2012) The control of root growth by reactive oxygen species in Salix nigra Marsh. seedlings. Plant Sci 183:197–205

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxynitrite (ONOO) is endogenously produced in Arabidopsis peroxisomes and is overproduced under cadmium stress. Ann Bot 113:87–96

    Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Foresi N, Lamattina L (2015) Nitric oxide is an ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J Exp Bot. doi:10.1093/jxb/erv073

    PubMed  Google Scholar 

  • Delis C, Dimou M, Flemetakis E, Aivalakis G, Katinakis P (2006) A root- and hypocotyl-specific gene coding for copper-containing amine oxidase is related to cell expansion in soybean seedlings. J Exp Bot 57:101–111

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • De Tullio M, Jiang K, Feldman L (2010) Redox regulation of root apical meristem organization: connecting root development to its environment. Plant Physiol Biochem 48:328–336

    Article  PubMed  Google Scholar 

  • Dunand C, Crèvecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci USA 108:18506–18511

    Article  PubMed Central  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630

    Article  CAS  PubMed  Google Scholar 

  • Gniazdowska A, Krasuska U, Bogatek R (2010a) Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta 232:1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Gniazdowska A, Krasuska U, Czajkowska K, Bogatek R (2010b) Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings. Plant Growth Regul 61:75–84

    Article  CAS  Google Scholar 

  • Gniazdowska A, Krasuska U, Andrzejczak O, Soltys D (2015) Allelopathic compounds as oxidative stress agents: YES or NO. In: Gupta KJ, Igamberdiev AU (eds) Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Springer, Germany

    Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang WN, Liu HK, Zhang HH, Chen Z, Guo YD, Kang YF (2013) Ethylene-induced changes in lignification and cell wall-degrading enzymes in the roots of mungbean (Vigna radiata) sprouts. Plant Physiol Biochem 73:412–419

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Su M, Wang L, Jiao C, Sun Z, Cheng W, Li F, Wang C (2012) Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination. Plant Physiol Biochem 53:84–93

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Raymond MJ, Yang Z, Smirnoff N (2007) NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot 58:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kasprowicz A, Szuba A, Volkmann D, Baluska F, Wojtaszek P (2009) Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in cell type-specific manner in root apices. J Exp Bot 60:1605–1617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    Article  PubMed Central  PubMed  Google Scholar 

  • Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier P, Hancock RD, Foyer CH (2011) The transcription factor ABI-4 is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. Plant Cell 23:3319–3334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krasuska U, Gniazdowska A (2012) Nitric oxide and hydrogen cyanide as regulating factors of enzymatic antioxidant system in germinating apple embryos. Acta Physiol Planta 34:683–692

    Article  CAS  Google Scholar 

  • Krasuska U, Ciacka K, Andryka P, Bogatek R, Gniazdowska A (2015) “Nitrosative door” in seed dormancy alleviation and germination. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants, Seria: signaling and communication in plants. Springer, Berlin

    Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Kuya N, Sato S (2011) The relationship between profiles of plagiogravitropism and morphometry of columella cells during the development of lateral roots of Vigna angularis. Adv Space Res 47:553–562

    Article  CAS  Google Scholar 

  • Kwasniewski M, Chwialkowska K, Kwasniewska J, Kusak J, Szarejko I (2013) Accumulation of peroxidase-related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. J Plant Physiol 170:185–195

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Park CH, Kim AR, Chang SC, Kim SH, Lee WS, Kim SK (2011) The effect of ascorbic acid and dehydroascorbic acid on the root gravitropic response in Arabidopsis thaliana. Plant Physiol Biochem 49:909–916

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153:402–412

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang WS (2008) Salt-avoidance tropism in Arabidopsis thaliana. Plant Signal Behav 3:351–353

    Article  PubMed Central  PubMed  Google Scholar 

  • Liang Y, Mitchell DM, Harris JM (2007) Abscisic acid rescues the root meristem defects on the Medicago truncatula latd mutant. Dev Biol 304:297–307

    Article  CAS  PubMed  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667

    Article  CAS  PubMed  Google Scholar 

  • Liszkay A, Van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2 •− H2O2, and OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lombardo MC, Graziano M, Polacco J, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1:28–33

    Article  PubMed Central  PubMed  Google Scholar 

  • Méndez-Bravo A, Raya-González J, Herrera-Estrella L, Lopez-Bicio J (2010) Nitric oxide is involved in alkamide-induced lateral root development in Arabidopsis. Plant Cell Physiol 51:1612–1626

    Article  PubMed  Google Scholar 

  • Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–2356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monzón GC, Pinedo M, Di Rienzo J, Novo-Uzal E, Pomar F, Lamattina L, de la Canal L (2014) Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses. Nitric Oxide 39:20–28

    Article  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Møller IM, Sweetlove LJ (2010) ROS signalling – specificity is required. Trends Plant Sci 15:370–374

    Article  PubMed  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 14:181–195

    Article  Google Scholar 

  • Müller K, Linkies A, Vreeburg RAM, Fry SC, Liszkay AK, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150:1855–1865

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller K, Linkies A, Leubner-Metzger G, Kermode AR (2012) Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signaling. J Exp Bot 63:6325–6334

    Article  PubMed Central  PubMed  Google Scholar 

  • Oracz K, Voegele A, Tarkowská D, Jacquemoud D, Tureckova T, Urbanova T, Strnad M, Sliwinska E, Leubner-Metzger G (2012) Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. Plant Cell Physiol 53:81–95

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peer WA, Cheng Y, Murphy AS (2013) Evidence of oxidative attenuation of auxin signaling. J Exp Bot 64:2629–2639

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141:351–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rashotte AM, Brady SR, Reed RC, Ante AJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in root of Arabidopsis. Plant Physiol 122:481–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen A, Mason MG, De Cuyper C et al (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Renew S, Heyno E, Schopfer P, Liszkay A (2005) Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by spin trapping electron paramagnetic resonance spectroscopy. Plant J 44:342–347

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Bassham DC (2014) Root growth movements: waving and skewing. Plant Sci 221–222:42–47

    Article  PubMed  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Fernandez R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Montagu MV, Inze D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanz L, Fernández-Marcos M, Modrego A (2014) Nitric oxide plays a role in stem cell niche homeostasis through its interaction with auxin. Plant Physiol 166:1972–1984

    Article  PubMed Central  PubMed  Google Scholar 

  • Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F (2013) Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. New Phytol 200:473–482

    Article  CAS  PubMed  Google Scholar 

  • Soltys D, Rudzińska-Langwald A, Kurek W, Szajko K, Sliwinska E, Bogatek R, Gniazdowska A (2014) Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression. J Plant Physiol 171:565–575

    Article  CAS  PubMed  Google Scholar 

  • Soltys D, Rudzinska-Lagwald A, Gniazdowska A, Wiśniewska A, Bogatek R (2012) Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta 236:1629–1638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746

    Article  PubMed Central  PubMed  Google Scholar 

  • Tassoni A, van Buuren M, Franceschetti M, Fornale S, Bagni N (2000) Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem 38:383–393

    Article  CAS  Google Scholar 

  • Terrile MC, París R, Calderón-Villalobos LIA, Iglesias MJ, Lamattina L, Estelle M, Casalonque CA (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J 70:492–500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tewari RK, Hahn EJ, Paek KY (2008) Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep 27:563–573

    Article  CAS  PubMed  Google Scholar 

  • Tian H, De Smet I, Ding Z (2014) Shaping a root system: regulating lateral versus primary root growth. Trends Plant Sci 19:426–431

    Article  CAS  PubMed  Google Scholar 

  • Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis KA, Angelini R, Cona A (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol 157:200–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tracy SR, Black CR, Roberts JA, Dodd IC, Mooney SJ (2015) Using X-ray computed tomography to explore the role of abscisic acid in moderating the impact of soil compaction on root system architecture. Environ Exp Bot 110:11–18

    Article  CAS  Google Scholar 

  • Trewavas A (2005) Green plants as intelligent organisms. Trends Plant Sci 10:413–419

    Article  CAS  PubMed  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, van Montagu M, Inze D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong TC, Bourque S, Lecourieux D, Amelot N, Grat S, Briere C, Mazars C, Pugin A, Ranjeva R (2006) Calcium signaling in plant cell organelles delimited by a double membrane. Biochim Biophys Acta 1763:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NBB, Bihan TL, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Bousquet A, Harris JM (2014) Abscisic acid and LATERAL ROOT ORGAN DEFECTIVE/NUMEROUS INFECTIONS AND POLYPHENOLICS modulate root elongation via reactive oxygen species in Medicago trunculata. Plant Physiol 166:644–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The manuscript was prepared during realization of grant no. 2014/13/B/NZ9/02074 financed by National Science Centre, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Krasuska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krasuska, U., Gniazdowska, A. (2015). ROS–RNS–Phytohormones Network in Root Response Strategy. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_13

Download citation

Publish with us

Policies and ethics