Skip to main content

Production Sites of Reactive Oxygen Species (ROS) in Organelles from Plant Cells

  • Chapter
Reactive Oxygen Species and Oxidative Damage in Plants Under Stress

Abstract

Reactive oxygen species (ROS) have been considered for a long time as undesirable by-product of the cellular metabolism, but recently the role of ROS in molecular signaling processes has been reported. Consequently, the cell must keep a fragile equilibrium between ROS production and the antioxidant defenses that protect cells in vivo against potential damages (oxidative stress) and, alternatively, allow the inter- and intra-cell communications. This equilibrium may become disturbed under different array of adverse conditions by an excessive generation of ROS or by an impaired antioxidant defenses. Plant cells have a compartmentalization of ROS production in the different organelles including chloroplasts, mitochondria, or peroxisomes, and they also have a complex battery of antioxidant enzymes usually close to the site of ROS production. Cell compartmentalization has been demonstrated to be an additional mechanism of cellular ROS modulation for signaling purposes. This chapter will provide a general overview of the main system of ROS production/regulation in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams WW, Demmig-Adams B (1992) Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 186:390–398

    Article  CAS  PubMed  Google Scholar 

  • Arent S, Pye VE, Henriksen A (2008) Structure and function of plant acyl-CoA oxidases. Plant Physiol Biochem 46:292–301

    Article  CAS  PubMed  Google Scholar 

  • Asada K, Kiso K, Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 249:2175–2181

    CAS  PubMed  Google Scholar 

  • Asada K (1992) Production and scavenging of active oxygen in chloroplasts. In: Scandalios JG (ed) Molecular biology of free radical scavenging system. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 173–192

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker A, Paudyal R (2014) The life of the peroxisome: from birth to death. Curr Opin Plant Biol 22:39–47

    Article  CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bunkelmann JR, Trelease RN (1996) Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes. Plant Physiol 110:589–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2014) NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions. Front Environ Sci 2:55

    Article  Google Scholar 

  • Corpas FJ, Trelease RN (1998) Differential expression of ascorbate peroxidase and a putative molecular chaperone in the boundary membrane of differentiating cucumber seedling peroxisomes. J Plant Physiol 153:332–338

    Article  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–50

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, del Río LA (2008) peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J Plant Physiol 165:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Alché JD, Barroso JB (2013) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci 4:126

    PubMed Central  PubMed  Google Scholar 

  • Corpas FJ, Begara-Morales JC, Sánchez-Calvo B, Chaki M, Barroso JB (2015) Nitration and S-nitrosylation: two post-translational modifications (PTMs) mediated by reactive nitrogen species (RNS) which participate in signaling processes of plant cells. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signalling and communication in plants. Springer, Berlin

    Google Scholar 

  • Daudi A, Cheng Z, O’Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24:275–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams W (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  CAS  PubMed  Google Scholar 

  • del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    Article  PubMed  CAS  Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Google Scholar 

  • del Río LA, Lyon DS, Olah I, Glick B, Salin ML (1983) Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant. Planta 158:216–224

    Article  PubMed  Google Scholar 

  • del Río LA, Fernández VM, Rupérez FL, Sandalio LM, Palma JM (1989) NADH induces the generation of superoxide radicals in leaf peroxisomes. Plant Physiol 89:728–31

    Article  PubMed Central  PubMed  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • Delker C, Zolman BK, Miersch O, Wasternack C (2007) Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal β-oxidation enzymes-additional proof by properties of pex6 and aim1. Phytochemistry 68:1642–1650

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ (2003) Plant peroxiredoxins. Annu Rev Plant Physiol Plant Mol Biol 54:93–107

    Article  CAS  Google Scholar 

  • Droillard MJ, Paulin A (1990) Isozymes of superoxide dismutase in mitochondria and peroxisomes isolated from petals of carnation (Dianthus caryophyllus) during senescence. Plant Physiol 94:1187–1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lelandais M, Edwards EA, Mullineaux PM (1991) The role of ascorbate in plants, interaction with photosynthesis, and regulatory significance. In: Pell E, Steffen K (eds) Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiologists, Rockville, pp 131–143

    Google Scholar 

  • Foyer CH, Lescure JC, Lefebvre C, Morot-Gaudry JF, Vincentz M, Vaucheret H (1994) Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity. Plant Physiol 104:171–178

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goyer A, Johnson TL, Olsen LJ, Collakova E, Shachar-Hill Y, Rhodes D, Hanson AD (2004) Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J Biol Chem 279:16947

    Article  CAS  PubMed  Google Scholar 

  • Grace SC (1990) Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci 47:1875–86

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Igamberdiev AU (2015) Compartmentalization of reactive oxygen species and nitric oxide production in plant cells: an overview. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communications in plants. Springer International Publishing, Switzerland, pp 1–14

    Google Scholar 

  • Hänsch R, Lang C, Riebeseel E, Lindigkeit R, Gessler A, Rennenberg H, Mendel RR (2006) Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step. J Biol Chem 281:6884–6888

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford, UK

    Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T, Kanematsu S, Asada K (1984) Occurrence of CuZn-superoxide dismutase in the intrathylakoid space of spinach chloroplasts. Plant Cell Physiol 25:883–889

    CAS  Google Scholar 

  • Hebelstrup KH, Møller I (2015) Mitochondrial signaling in plants under hypoxia: use of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communications in plants. Springer International Publishing, Switzerland, pp 63–77

    Google Scholar 

  • Hideg E, Kalai T, Hideg K, Vass I (1998) Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37:11405–11411

    Article  CAS  PubMed  Google Scholar 

  • Hinkle PC, Butow RA, Rackers E (1967) Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV Reverse electron transfer in the flavin-cytochrome b region of the respiratory chain of beef heart submitochondrial particles. J Biol Chem 242:5169–5173

    CAS  PubMed  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed Central  PubMed  Google Scholar 

  • Jiménez A, Hernández JA, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed Central  PubMed  Google Scholar 

  • Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A, Zipfel C (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54:43–55

    Article  CAS  PubMed  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Sharma A, Guruprasad K, Pati PK (2014) Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 32:551–563

    Article  CAS  PubMed  Google Scholar 

  • Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kukavica B, Vucinić Z, Vuletić M (2005) Superoxide dismutase, peroxidase, and germin-like protein activity in plasma membranes and apoplast of maize roots. Protoplasma 226:191–197

    Article  CAS  PubMed  Google Scholar 

  • Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, del Río LA (2005) Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    Article  CAS  PubMed  Google Scholar 

  • López-Huertas E, Corpas FJ, Sandalio LM, del Río LA (1999) Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J 337:531–536

    Article  PubMed Central  PubMed  Google Scholar 

  • Loschen G, Azzi A (1975) On the formation of hydrogen peroxide and oxygen radicals in heart mitochondria. Recent Adv Stud Cardiac Struct Metab 7:3–12

    Google Scholar 

  • Mano S, Nishimura M (2005) Plant peroxisomes. Vitam Horm 72:111–154

    Article  CAS  PubMed  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  CAS  PubMed  Google Scholar 

  • Martí MC, Camejo D, Olmos E, Sandalio LM, Fernández-García N, Jiménez A, Sevilla F (2009) Characterisation and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruits. Plant Biol 11:613–624

    Article  PubMed  CAS  Google Scholar 

  • Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2010) Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol 51:190–200

    Article  CAS  PubMed  Google Scholar 

  • Mateos RM, León AM, Sandalio LM, Gómez M, del Río LA, Palma JM (2003) Peroxisomes from pepper fruits (Capsicum annuum L.): purification, characterisation and antioxidant activity. J Plant Physiol 160:1507–1516

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A 96:8271–8276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen. Arch Biochem Biophys 34(2):339–351

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Volokita M, Guy M (2015) Antioxidative systems and stress tolerance: insights from wild and cultivated tomato species. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communications in plants. Springer International Publishing, Switzerland, pp 89–131

    Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Muller M, Hernández I, Alegre L, Munné-Bosch S (2006) Enhanced alpha-tocopherol quinone levels and xanthophyll cycle de-epoxidation in rosemary plants exposed to water deficit during a Mediterranean winter. J Plant Physiol 163:601–606

    Article  CAS  PubMed  Google Scholar 

  • Narendra S, Venkataramani S, Shen G, Wang J, Pasapula V, Lin Y, Kornyeyev D, Holaday AS, Zhang H (2006) The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 57:3033–3042

    Article  CAS  PubMed  Google Scholar 

  • Nikkanen L, Rintamäki E (2014) Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Phil Trans R Soc B 369:20130224

    Google Scholar 

  • O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Jiménez A, Sandalio LM, Corpas FJ, Lundqvist M, Gómez M, Sevilla F, del Río LA (2006) Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. J Exp Bot 57:1747–58

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Gupta DK, Corpas FJ (2013) Metalloenzymes involved in the metabolism of reactive oxygen species and heavy metal stress. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin

    Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6:379–389

    Article  CAS  PubMed  Google Scholar 

  • Planas-Portell J, Gallart M, Tiburcio AF, Altabella T (2013) Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol 13:109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal β-oxidation-a metabolic pathway with multiple functions. Biochim Biophys Acta 1763:1413–1426

    Article  CAS  PubMed  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popov VN (2015) Feedback loop of non-coupled respiration and reactive oxygen species production in plant mitochondria. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communications in plants. Springer International Publishing, Switzerland, pp 79–88

    Google Scholar 

  • Pruzinska A, Tanner G, Aubry S, Anders I, Moser S, Muller T, Ongania K-H, Krautler B, Youn J-Y, Liljegren SL et al (2005) Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puerto-Galán L, Pérez-Ruiz JM, Ferrández J, Cano B, Naranjo B, Nájera VA, González M, Lindahl AM, Cejudo FJ (2013) Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide. Front Plant Sci 4:310

    Article  PubMed Central  PubMed  Google Scholar 

  • Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Corpas FJ (2010) The peroxisomal ascorbate-glutathione pathway: molecular identification and insights into its essential role under environmental stress conditions. In: Anjum NA, Umar S, Chan MT (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Berlin

    Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pastori GM, Corpas FJ, Sandalio LM, del Río LA, Palma JM (2007) Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon cotyledons. J Exp Bot 58:2417–2427

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sandalio LM, Fernández VM, Rupérez FL, del Río LA (1988) Superoxide free radicals are produced in glyoxysomes. Plant Physiol 87:1–4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schürman P, Jacquot JP (2000) Plant thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51:371–400

    Article  Google Scholar 

  • Schwarz G, Mendel RR (2006) Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu Rev Plant Biol 57:623–647

    Article  CAS  PubMed  Google Scholar 

  • Shi YC, Fu YP, Liu WQ (2012) NADPH oxidase in plasma membrane is involved in stomatal closure induced by dehydroascorbate. Plant Physiol Biochem 51:26–30

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Siddique S, Matera C, Radakovic ZS, Hasan MS, Gutbrod P, Rozanska E, Sobczak M, Torres MA, Grundler FM (2014) Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection. Sci Signal 7(320):ra33

    Article  PubMed  CAS  Google Scholar 

  • Skelly MJ, Loake GJ (2013) Synthesis of redox-active molecules and their signaling functions during the expression of plant disease resistance. Antioxid Redox Signal 19:990–997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smirnoff N (2001) L-ascorbic acid biosynthesis. Vitam Horm 61:241–266

    Article  CAS  PubMed  Google Scholar 

  • Stöhr C, Ullrich WR (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53:2293–2303

    Article  PubMed  CAS  Google Scholar 

  • Streller S, Schinkel H, Wingsle G (1997) Apoplasmic CuZn-superoxide dismutase in Pinus sylvestris. Phyton Ann Rei Bot 37:271–276

    CAS  Google Scholar 

  • Sweetlove LJ, Foyer CH (2004) Roles for reactive oxygen species and antioxidants in plant mitochondria. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from genome to function, vol 1, Advances in photosynthesis and respiration. Kluwer Academic, Dordrecht

    Google Scholar 

  • Telfer A, Dhami S, Bishop SM, Phillips D, Barber J (1994) Beta-carotene quenches singlet oxygen formed by isolated Photosystem-II reaction centers. Biochemistry 33:14469–14474

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577

    Article  CAS  PubMed  Google Scholar 

  • Vanacker H, Carver TL, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vanacker H, Foyer CH, Carver TLW (1999) Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non-specific resistance. Planta 208:444–452

    Article  CAS  Google Scholar 

  • Veljovic-Jovanovic S, Oniki T, Takaham U (1998) Detection of Monodehydroascorbic acid radical in sulfite-treated leaves and mechanism of its formation. Plant Cell Physiol 39:1203–1208

    Article  Google Scholar 

  • Wagner DE, Przybyla D, op den Camp RG, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    Article  CAS  PubMed  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshie Y, Goto K, Takai R, Iwano M, Takayama S, Isogai A, Che FS (2005) Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotechnol 22:127–135

    Article  CAS  Google Scholar 

  • Yoshimura K, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (1999) Alternatively spliced mRNA variants of chloroplast ascorbate peroxidase isoenzymes in spinach leaves. Biochem J 338(Pt 1):41–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009) Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in our laboratories is supported by ERDF grants co-financed by the Ministry of Economy and Competitiveness (projects AGL2011-26044, BIO2012-33904) and the Junta de Andalucía (group BIO192) in Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco J. Corpas or José M. Palma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Corpas, F.J., Gupta, D.K., Palma, J.M. (2015). Production Sites of Reactive Oxygen Species (ROS) in Organelles from Plant Cells. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_1

Download citation

Publish with us

Policies and ethics