Skip to main content

Evaluation of Tissue Oxygenation

  • Chapter
Surgical Intensive Care Medicine

Abstract

The main goal of hemodynamic resuscitation is to preserve and/or restore tissue oxygenation. However, tissue oxygenation in itself is seldom measured in clinical practice due to technical limitations. Indirect measurements such as venous oxygen saturation and lactate levels are more often measured, but these may fail to detect impairment in tissue perfusion. Recent advances in technologies have allowed to detect that microcirculatory alterations are frequently observed in critically ill patients, especially in sepsis. These alterations are characterized by a decrease in capillary density and impaired perfusion in some but not all capillaries, which induce perfusion and oxygenation heterogeneities. This is of particular relevance for monitoring as the device should be able to detect tissue perfusion heterogeneity or its consequences. In this chapter we will describe these alterations and discuss the different techniques that can be used to explore tissue perfusion/oxygenation at bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369:1726–34.

    Article  CAS  PubMed  Google Scholar 

  2. Humer MF, Phang PT, Friesen BP, Allards MF, Goddard CM, Walley KR. Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs. J Appl Physiol. 1996;81:895–904.

    CAS  PubMed  Google Scholar 

  3. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.

    Article  PubMed  Google Scholar 

  4. Verdant CL, De Backer D, Bruhn A, Clausi C, Su F, Wang Z, et al. Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med. 2009;37:2875–81.

    Article  PubMed  Google Scholar 

  5. Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ. Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res. 1996;61:190–6.

    Article  CAS  PubMed  Google Scholar 

  6. Secor D, Li F, Ellis CG, Sharpe MD, Gross PL, Wilson JX, et al. Impaired microvascular perfusion in sepsis requires activated coagulation and P-selectin-mediated platelet adhesion in capillaries. Intensive Care Med. 2010;36:1928–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49:88–98.

    Article  PubMed  Google Scholar 

  8. Spanos A, Jhanji S, Vivian-Smith A, Harris T, Pearse RM. Early microvascular changes in sepsis and severe sepsis. Shock. 2010;33:387–91.

    Article  PubMed  Google Scholar 

  9. Filbin MR, Hou PC, Massey M, Barche A, Kao E, Bracey A, et al. The microcirculation is preserved in emergency department low-acuity sepsis patients without hypotension. Acad Emerg Med. 2014;21:154–62.

    Article  PubMed  Google Scholar 

  10. De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34:403–8.

    Article  PubMed  Google Scholar 

  11. Ospina-Tascon G, Neves AP, Occhipinti G, Donadello K, Buchele G, Simion D, et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med. 2010;36:949–55.

    Article  PubMed  Google Scholar 

  12. De Backer D, Donadello K, Sakr Y, Ospina-Tascon GA, Salgado DR, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791–9.

    Article  PubMed  Google Scholar 

  13. Hernandez G, Boerma EC, Dubin A, Bruhn A, Koopmans M, Edul VK, et al. Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. J Crit Care. 2013;28:538.e9–14.

    Article  CAS  Google Scholar 

  14. Trzeciak S, McCoy JV, Phillip DR, Arnold RC, Rizzuto M, Abate NL, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistant microvasculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–31.

    Article  PubMed  Google Scholar 

  16. De Backer D, Dubois MJ, Schmartz D, Koch M, Ducart A, Barvais L, et al. Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia. Ann Thorac Surg. 2009;88:1396–403.

    Article  PubMed  Google Scholar 

  17. Jhanji S, Lee C, Watson D, Hinds C, Pearse RM. Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intensive Care Med. 2009;35:671–7.

    Article  PubMed  Google Scholar 

  18. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003;101:3765–77.

    Article  CAS  PubMed  Google Scholar 

  19. Tachon G, Harrois A, Tanaka S, Kato H, Huet O, Pottecher J, et al. Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med. 2014;42:1433–41.

    Article  PubMed  Google Scholar 

  20. Donadello K, Favory R, Salgado-Ribeiro D, Vincent JL, Gottin L, Scolletta S, et al. Sublingual and muscular microcirculatory alterations after cardiac arrest: a pilot study. Resuscitation. 2011;82:690–5.

    Article  PubMed  Google Scholar 

  21. De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010;36:1813–25.

    Article  PubMed  Google Scholar 

  22. Boerma EC, Kuiper MA, Kingma WP, Egbers PH, Gerritsen RT, Ince C. Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med. 2008;34:1294–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ait-Oufella H, Bourcier S, Alves M, Galbois A, Baudel JL, Margetis D, et al. Alteration of skin perfusion in mottling area during septic shock. Ann Intensive Care. 2013;3:31.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rimachi R, Bruzzi dC, Orellano-Jimenez C, Cotton F, Vincent J, De Backer D. Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock. Anaesth Intensive Care. 2012;40:427–32.

    Google Scholar 

  25. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005;365:871–5.

    Article  CAS  PubMed  Google Scholar 

  26. De Backer D, Creteur J, Zhang H, Norrenberg M, Vincent JL. Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med. 1997;156:1099–104.

    Article  PubMed  Google Scholar 

  27. Jansen TC, van Bommel J, Schoonderbeek J, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al. Early lactate-guided therapy in ICU patients: a multicenter, open-label, randomized, controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.

    Article  PubMed  Google Scholar 

  28. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds M, Bennett D. Changes in central venous saturation following major surgery and association with outcome. Crit Care. 2005;9:R694–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI. Multicenter study of central venous oxygen saturation (ScvO2) as a predictor of mortality in patients with sepsis. Ann Emerg Med. 2010;55:40–6.

    Article  PubMed  Google Scholar 

  30. Boyle NH, Roberts PC, Ng B, Berkenstadt H, McLuckie A, Beale RJ, et al. Scanning laser Doppler is a useful technique to assess foot cutaneous perfusion during femoral artery cannulation. Crit Care. 1999;3:95–100.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Altintas MA, Altintas AA, Guggenheim M, Aust MC, Niederbichler AD, Knobloch K, et al. Insight in microcirculation and histomorphology during burn shock treatment using in vivo confocal-laser-scanning microscopy. J Crit Care. 2010;25:1–7.

    Article  Google Scholar 

  32. Bezemer R, Legrand M, Klijn E, Heger M, Post IC, van Gulik TM, et al. Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging. Opt Express. 2010;18:15054–61.

    Article  CAS  PubMed  Google Scholar 

  33. Favory R, Poissy J, Alves I, Guerry MJ, Lemyze M, Parmentier-Decrucq E, et al. Activated protein C improves macrovascular and microvascular reactivity in human severe sepsis and septic shock. Shock. 2013;40:512–8.

    Article  CAS  PubMed  Google Scholar 

  34. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147:91–9.

    Article  PubMed  Google Scholar 

  35. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 2002;360:1395–6.

    Article  PubMed  Google Scholar 

  36. Boerma EC, Koopmans M, Konijn A, Kaiferova K, Bakker AJ, Van Roon EN, et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med. 2010;38:93–100.

    Article  CAS  PubMed  Google Scholar 

  37. Jhanji S, Vivian-Smith A, Lucena-Amaro S, Watson D, Hinds CJ, Pearse RM. Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial. Crit Care. 2010;14:R151.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maybauer DM, Talke PO, Westphal M, Maybauer MO, Traber LD, Enkhbaatar P, et al. Positive end-expiratory pressure ventilation increases extravascular lung water due to a decrease in lung lymph flow. Anaesth Intensive Care. 2006;34:329–33.

    CAS  PubMed  Google Scholar 

  39. Shapiro NI, Arnold R, Sherwin R, O’Connor J, Najarro G, Singh S, et al. The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit Care. 2011;15:R223.

    Article  PubMed  PubMed Central  Google Scholar 

  40. De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11:R101.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Buchele GL, Silva E, Ospina-Tascon G, Vincent JL, De Backer D. Effects of hydrocortisone on microcirculatory alterations in patients with septic shock. Crit Care Med. 2009;37:1341–7.

    Article  PubMed  Google Scholar 

  42. Bezemer R, Dobbe JG, Bartels SA, Christiaan BE, Elbers PW, Heger M, et al. Rapid automatic assessment of microvascular density in sidestream dark field images. Med Biol Eng Comput. 2011;49:1269–78.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Edul VS, Enrico C, Laviolle B, Vazquez AR, Ince C, Dubin A. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med. 2012;40:1443–8.

    Article  PubMed  Google Scholar 

  44. Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL. The prognostic value of muscle StO2 in septic patients. Intensive Care Med. 2007;33:1549–56.

    Article  PubMed  Google Scholar 

  45. Doerschug KC, Delsing AS, Schmidt GA, Haynes WG. Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol. 2007;293:H1065–71.

    Article  CAS  PubMed  Google Scholar 

  46. Mesquida J, Espinal C, Gruartmoner G, Masip J, Sabatier C, Baigorri F, et al. Prognostic implications of tissue oxygen saturation in human septic shock. Intensive Care Med. 2012;38(4):592–7.

    Article  CAS  PubMed  Google Scholar 

  47. Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med. 2006;32:516–23.

    Article  PubMed  Google Scholar 

  48. Schlichtig R, Bowles SA. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol. 1994;76:2443–51.

    CAS  PubMed  Google Scholar 

  49. Vallee F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, et al. Cutaneous ear lobe PCO2 at 37° C to evaluate micro perfusion in septic patients. Chest. 2010;138:1062–70.

    Article  PubMed  Google Scholar 

  50. Kopterides P, Theodorakopoulou M, Nikitas N, Ilias I, Vassiliadi DA, Orfanos SE, et al. Red blood cell transfusion affects microdialysis-assessed interstitial lactate/pyruvate ratio in critically ill patients with late sepsis. Intensive Care Med. 2012;38:1843–50.

    Article  CAS  PubMed  Google Scholar 

  51. Verdant CL, Chierego M, De Moor V, Chamlou R, Creteur J, de Dieu MJ, et al. Prediction of postoperative complications after urgent laparotomy by intraperitoneal microdialysis: a pilot study. Ann Surg. 2006;244:994–1002.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of Interest

None to be declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel de Backer MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Backer, D., Donadello, K. (2016). Evaluation of Tissue Oxygenation. In: O'Donnell, J., Nácul, F. (eds) Surgical Intensive Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-19668-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19668-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19667-1

  • Online ISBN: 978-3-319-19668-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics