Skip to main content
  • 2734 Accesses

Abstract

Oxygen is transported from the atmosphere to the cells by a multistep process involving the coordinated functioning of the respiratory and cardiovascular systems. The individual steps include alveolar ventilation, diffusion from air to blood, binding to hemoglobin, convective transport to the tissues, dissociation from hemoglobin in the systemic microvasculature, and finally diffusion from blood to the mitochondria. The sequential, interactive nature of oxygen transport carries the risk that an impaired ability of any given transport step to deliver oxygen to the next could ultimately result in tissue hypoxia. This chapter discusses how oxygen transport is both increased in response to increased oxygen demand and maintained in the face of limitations produced by disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lumb AB, editor. Nunn’s applied respiratory physiology. 7th ed. Philadelphia, PA: Elsevier; 2010.

    Google Scholar 

  2. Boveris DL, Boveris A. Oxygen delivery to the tissues and mitochondrial respiration. Front Biosci. 2007;12:1014–23.

    Article  CAS  PubMed  Google Scholar 

  3. Weibel ER, Bachofen H. Structural design of the alveolar epithelium and fluid exchange. In: Fishman AP, Renkin EM, editors. Pulmonary edema. Baltimore, MD: Williams and Wilkins; 1979. p. 1–20.

    Google Scholar 

  4. Ravin MG, Epstein RM, Malm JR. Contribution of thebesian veins to the physiologic shunt in anesthetized man. J Appl Physiol. 1965;20:1148–52.

    CAS  PubMed  Google Scholar 

  5. Aviado DM, Daly DB, Lee CY, Schmidt CF. The contribution of the bronchial circulation to the venous admixture in pulmonary venous blood. J Physiol. 1961;155:602–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mik EG, Johannes T, Zuurbier CJ, Heinen A, Houben-Weerts JHPM, Balestra GM, et al. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J. 2008;95:3977–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mik EG, Ince C, Eerbeek O, Heinen A, Stap J, Hooibrink B, et al. Mitochondrial oxygen tension in the heart. J Mol Cell Cardiol. 2009;46:943–51.

    Article  CAS  PubMed  Google Scholar 

  8. Harms FA, Bodmer SI, Raat NJ, Stolker RJ, Mik EG. Validation of the protoporphyrin IX-triplet state lifetime technique for mitochondrial oxygen measurements. Opt Lett. 2012;37:2625–7.

    Article  CAS  PubMed  Google Scholar 

  9. Wagner PD. Muscle intracellular oxygenation during exercise: optimization for oxygen transport, metabolism, and adaptive change. Eur J Appl Physiol. 2012;112:1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wagner PD. Determinants of maximal oxygen transport and utilization. Annu Rev Physiol. 1996;58:21–50.

    Article  CAS  PubMed  Google Scholar 

  11. Bihari DJ. Prevention of multiple organ failure in the critically ill. In: Vincent JL, editor. Intensive care medicine: annual update, vol. 3. Heidelberg: Springer; 1987. p. 26–39.

    Google Scholar 

  12. Barcroft J. Physiological effects of insufficient oxygen supply. Nature. 1920;106:125–9.

    Article  CAS  Google Scholar 

  13. Samsel RW, Schumacker PT. Oxygen delivery to tissues. Eur Respir J. 1991;4:1258–87.

    CAS  PubMed  Google Scholar 

  14. Danek SJ, Lynch JP, Weg JG, Dantzker DR. The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome. Am Rev Respir Dis. 1980;122:387–95.

    CAS  PubMed  Google Scholar 

  15. Gilbert EM, Haupt MT, Mandanas RY, Huaringa AJ, Carlson RW. The effect of fluid loading on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis. 1986;134:873–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wagner PD. The biology of oxygen. Eur Respir J. 2008;31:887–90.

    Article  CAS  PubMed  Google Scholar 

  17. Nichols D, Nielsen ND. Oxygen delivery and consumption: a macrocirculatory perspective. Crit Care Clin. 2010;26:239–53.

    Article  PubMed  Google Scholar 

  18. Donati A, Tibboel D, Ince C. Towards integrative physiological monitoring of the critically ill: from cardiovascular to microcirculatory and cellular function monitoring at the bedside. Crit Care. 2013;17:S5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Edul VSK, Dubin A, Ince C. The microcirculation as a therapeutic target in the treatment of sepsis and shock. Semin Respir Crit Care Med. 2011;32:558–68.

    Article  Google Scholar 

  20. Fink MP. Cytopathic hypoxia. Is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration? Crit Care Clin. 2002;18:165–75.

    Article  CAS  PubMed  Google Scholar 

  21. Protti A, Singer M. Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care. 2006;10:228.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dare AJ, Phillips ARJ, Hickey AJR, Mittal A, Loveday B, Thompson N, et al. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction. Free Radic Biol Med. 2009;47:1517–25.

    Article  CAS  PubMed  Google Scholar 

  23. Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med. 1999;27:1369–77.

    Article  CAS  PubMed  Google Scholar 

  24. Hollenberg SM. Think locally: evaluation of the microcirculation in sepsis. Intensive Care Med. 2010;36:1807–9.

    Article  PubMed  Google Scholar 

  25. Blumgart HL, Altschule MD. Clinical significance of cardiac and respiratory adjustments in chronic anemia. Blood. 1948;3:329–48.

    CAS  PubMed  Google Scholar 

  26. Wagner PD. Diffusion and chemical reaction in pulmonary gas exchange. Physiol Rev. 1977;57:257–312.

    CAS  PubMed  Google Scholar 

  27. Tabuchi A, Styp-Rekowska B, Slutsky AS, Wagner PD, Pries AR, Kuebler WM. Precapillary oxygenation contributes relevantly to gas exchange in the intact lung. Am J Respir Crit Care Med. 2013;188:474–81.

    Article  PubMed  Google Scholar 

  28. Damask MC, Schwarz Y, Weissman C. Energy measurements and requirements in critically ill patients. Crit Care Clin. 1987;3:71–96.

    CAS  PubMed  Google Scholar 

  29. Agustí AGN, Roca J, Gea J, Wagner PD, Xaubet A, Rodriguez-Roisin R. Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis. Am Rev Respir Dis. 1991;143:219–25.

    Article  PubMed  Google Scholar 

  30. Rodríguez-Roisin R, Krowka MJ. Current concepts: hepatopulmonary syndrome—a liver-induced lung vascular disorder. N Eng J Med. 2008;358:2378–87.

    Article  Google Scholar 

  31. Wagner PD, Dantzker DR, Dueck R, Clausen JL, West JB. Ventilation-perfusion inequality in chronic obstructive pulmonary disease. J Clin Invest. 1977;59:203–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Terry PB, White Jr RI, Barth KH, Kaufman SL, Mitchell SE. Pulmonary arteriovenous malformations. Physiologic observations and results of therapeutic balloon embolization. N Eng J Med. 1983;308:1197–200.

    Article  CAS  Google Scholar 

  33. Gossage JR, Kanj G. Pulmonary arteriovenous malformations. Am J Respir Crit Care Med. 1998;158:643–61.

    Article  CAS  PubMed  Google Scholar 

  34. Myers JD, Mark EJ. Case 43-1980—Severe acute respiratory failure in a 27-year old woman. N Eng J Med. 1980;303:1049–56.

    Article  Google Scholar 

  35. Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92:367–520.

    Article  CAS  PubMed  Google Scholar 

  36. West JB. Pulmonary pathophysiology. The essentials. 6th ed. Philadelphia, PA: Lippincott Williams & Williams; 2003.

    Google Scholar 

  37. Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. Br J Anaesth. 2003;91:61–72.

    Article  CAS  PubMed  Google Scholar 

  38. Duggan M, Kavanaugh BP. Pulmonary atelectasis. A pathogenic perioperative entity. Anesthesiology. 2005;102:838–54.

    Article  PubMed  Google Scholar 

  39. Hedenstierna G, Edmark L. Mechanisms of atelectasis in the perioperative period. Best Pract Res Clin Anaesthesiol. 2010;24:157–69.

    Article  PubMed  Google Scholar 

  40. Dale WA, Rahn H. Rate of gas absorption during atelectasis. Am J Physiol. 1952;170:606–15.

    CAS  PubMed  Google Scholar 

  41. Piiper J. Physiological equilibria of gas cavities in the body. In: Fenn WO, Rahn H, editors. Handbook of physiology. Section 3: Respiration, vol. 11. Washington, DC: American Physiological Society; 1965. p. 1205–18.

    Google Scholar 

  42. Dantzker DR, Wagner PD, West JB. Instability of lung units with low VA/Q ratios during O2 breathing. J Appl Physiol. 1975;38:886–95.

    Google Scholar 

  43. Remolina C, Kahn AU, Santiago TV, Edelman NH. Positional hypoxemia in unilateral disease. N Eng J Med. 1981;304:523–5.

    Article  CAS  Google Scholar 

  44. Robin ED, Laman D, Horn BR, Theodore J. Platypnea related to orthodeoxia caused by true vascular lung shunts. N Eng J Med. 1976;294:941–3.

    Article  CAS  Google Scholar 

  45. Piehl MA, Brown RS. Use of extreme position changes in acute respiratory failure. Crit Care Med. 1976;4:13–4.

    Article  CAS  PubMed  Google Scholar 

  46. Gattinoni L, Taccone P, Carlesso E, Marini JJ. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med. 2013;11:1286–93.

    Article  Google Scholar 

  47. Hall JE. Guyton and Hall textbook of medical physiology. 12th ed. Philadelphia, PA: Elsevier; 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Maron PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maron, M.B. (2016). Oxygen Transport. In: O'Donnell, J., Nácul, F. (eds) Surgical Intensive Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-19668-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19668-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19667-1

  • Online ISBN: 978-3-319-19668-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics