Skip to main content

Abstract

Shock is generally regarded as a syndrome precipitated by a systemic global tissue hypoperfusion that leads to widespread cellular dysoxia and vital organ dysfunction. The three physiologic stages of shock (compensated, microvascular injury, and decompensated) are best understood in terms of oxygen debt. The microcirculation is the vital organ of the cardiovascular system, and changes at this level can and should guide resuscitation in patients presenting with shock. The etiology of shock (hypovolemic, cardiogenic, obstructive, distributive, septic) certainly guides specific therapies, but metabolic endpoints representing the microcirculation and tissue perfusion remain the same. Despite the difficulties inherent in diagnosing these occult forms of shock, it is of utmost importance to identify these patients as early as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinsky MR. Cardiovascular issues in respiratory care. Chest. 2005;128:592S–7.

    Article  PubMed  Google Scholar 

  2. Beyar R, Halperin HR, Tsitlik JE, Guerci AD, Kass D, Weisfeldt ML, et al. Circulatory assistance by intrathoracic pressure variations: optimization and mechanisms studied by a mathematical model in relation to experimental data. Circ Res. 1989;64:703–20.

    Article  CAS  PubMed  Google Scholar 

  3. Crowell JW. Oxygen debt as the common parameter in irreversible hemorrhagic shock. Fed Proc. 1961;20:116.

    Google Scholar 

  4. Crowell JW, Smith EE. Oxygen deficit and irreversible hemorrhagic shock. Am J Physiol. 1964;206:313.

    CAS  PubMed  Google Scholar 

  5. Dunham CM, Siegel JH, Weireter L, Fabian M, Goodarzi S, Guadalupi P, et al. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit Care Med. 1991;19:231–43.

    Article  CAS  PubMed  Google Scholar 

  6. Rixen D, Siegel JH. Metabolic correlates of oxygen debt predict posttrauma early acute respiratory distress syndrome and the related cytokine response. J Trauma. 2000;49:392–403.

    Article  CAS  PubMed  Google Scholar 

  7. Rixen D, Raum M, Holzgraefe B, Sauerland S, Nagelschmidt M, Neugebauer EA. A pig hemorrhagic shock model: oxygen debt and metabolic acidemia as indicators of severity. Shock. 2001;16:239–44.

    Article  CAS  PubMed  Google Scholar 

  8. Shippy CR, Appel PL, Shoemaker WC. Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med. 1984;12:107–12.

    Article  CAS  PubMed  Google Scholar 

  9. Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16:1117–20.

    Article  CAS  PubMed  Google Scholar 

  10. Reilly PM, Wilkins KB, Fuh KC, Haglund U, Bulkley GB. The mesenteric hemodynamic response to circulatory shock: an overview. Shock. 2001;15:329–43.

    Article  CAS  PubMed  Google Scholar 

  11. Chien S. Role of the sympathetic nervous system in hemorrhage. Physiol Rev. 1967;47:214–88.

    CAS  PubMed  Google Scholar 

  12. Cumming AD, Driedger AA, McDonald JW, Lindsay RM, Solez K, Linton AL. Vasoactive hormones in the renal response to systemic sepsis. Am J Kidney Dis. 1988;11:23–32.

    Article  CAS  PubMed  Google Scholar 

  13. Marik PE, Zaloga GP. Adrenal insufficiency in the critically ill: a new look at an old problem. Chest. 2002;122:1784–96.

    Article  PubMed  Google Scholar 

  14. Givertz MM. Manipulation of the renin-angiotensin system. Circulation. 2001;104:E14–8.

    Article  CAS  PubMed  Google Scholar 

  15. Jan Danser AH. Local renin-angiotensin systems: the unanswered questions. Int J Biochem Cell Biol. 2003;35:759–68.

    Article  CAS  Google Scholar 

  16. Zingg H, Bourque C, Bichet D. Vasopressin and oxytocin: molecular, cellular and clinical advances. New York: Plenum; 1998.

    Book  Google Scholar 

  17. Normon AW, Litwack G. Hormones. 2nd ed. San Diego: Academic; 1997.

    Google Scholar 

  18. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345:588–95.

    Article  CAS  PubMed  Google Scholar 

  19. Gann DS, Carlson DE, Byrnes GJ, Pirkle Jr JC, Allen-Rowlands CF. Role of solute in the early restitution of blood volume after hemorrhage. Surgery. 1983;94:439–46.

    CAS  PubMed  Google Scholar 

  20. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87:198–210.

    Article  CAS  PubMed  Google Scholar 

  21. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454:345–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fels J, Jeggle P, Liashkovich I, Peters W, Oberleithner H. Nanomechanics of vascular endothelium. Cell Tissue Res. 2014;355:727–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, et al. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Int Med. 1990;113:227–42.

    Article  CAS  PubMed  Google Scholar 

  24. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–31.

    Article  PubMed  Google Scholar 

  25. Garrison RN, Spain DA, Wilson MA, Keelen PA, Harris PD. Microvascular changes explain the “two-hit” theory of multiple organ failure. Ann Surg. 1998;227:851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bond RF, Johnson III G. Vascular adrenergic interactions during hemorrhagic shock. Fed Proc. 1985;44:281–9.

    CAS  PubMed  Google Scholar 

  27. Gomez H, Mesquida J, Hermus L, Polanco P, Kim HK, Zenker S, et al. Physiologic responses to severe hemorrhagic shock and the genesis of cardiovascular collapse: can irreversibility be anticipated? J Surg Res. 2012;178:358–69.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kirkpatrick CJ, Bittinger F, Klein CL, Hauptmann S, Klosterhalfen B. The role of the microcirculation in multiple organ dysfunction syndrome (MODS): a review and perspective. Virchows Arch. 1996;427:461–76.

    Article  CAS  PubMed  Google Scholar 

  29. Elbers PW, Ince C. Mechanisms of critical illness—classifying microcirculatory flow abnormalities in distributive shock. Crit Care. 2006;10:221.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003;101:3765–77.

    Article  CAS  PubMed  Google Scholar 

  31. Chierego M, Verdant C, De Backer D. Microcirculatory alterations in critically ill patients. Minerva Anestesiol. 2006;72:199–205.

    CAS  PubMed  Google Scholar 

  32. Saldeen T. Trends in microvascular research. The microembolism syndrome. Microvasc Res. 1976;11:227–59.

    Article  CAS  PubMed  Google Scholar 

  33. Schlag G, Redl H. Morphology of the microvascular system in shock: lung, liver, and skeletal muscles. Crit Care Med. 1985;13:1045–9.

    CAS  PubMed  Google Scholar 

  34. Riede UN, Joachim H, Hassenstein J, Costabel U, Sandritter W, Augustin P, et al. The pulmonary air-blood barrier of human shock lungs (a clinical, ultrastructural and morphometric study). Pathol Res Pract. 1978;162:41–72.

    Article  CAS  PubMed  Google Scholar 

  35. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5:1209–12.

    Article  CAS  PubMed  Google Scholar 

  36. De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11:R101.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Harlan JM, Winn RK. Leukocyte-endothelial interactions: clinical trials of anti-adhesion therapy. Crit Care Med. 2002;30:S214–9.

    Article  CAS  PubMed  Google Scholar 

  38. Parent C, Eichacker PQ. Neutrophil and endothelial cell interactions in sepsis. The role of adhesion molecules. Infect Dis Clin North Am. 1999;13:427–47.

    Article  CAS  PubMed  Google Scholar 

  39. Rhee P, Langdale L, Mock C, Gentilello LM. Near-infrared spectroscopy: continuous measurement of cytochrome oxidation during hemorrhagic shock. Crit Care Med. 1997;25:166–70.

    Article  CAS  PubMed  Google Scholar 

  40. Taylor JH, Beilman GJ, Conroy MJ, Mulier KE, Myers D, Gruessner A, et al. Tissue energetics as measured by nuclear magnetic resonance spectroscopy during hemorrhagic shock. Shock. 2004;21:58–64.

    Article  PubMed  Google Scholar 

  41. Chaudry IH. Use of ATP following shock and ischemia. Ann N Y Acad Sci. 1990;603:130–40.

    Article  CAS  PubMed  Google Scholar 

  42. Van III WC, Dhar A, Morrison DC, Longorio MA, Maxfield DM. Cellular energetics in hemorrhagic shock: restoring adenosine triphosphate to the cells. J Trauma. 2003;54:S169–76.

    Google Scholar 

  43. Poraicu D, Sandor S, Menessy I. Decrease of red blood cell filterability seen in intensive care. II. Red blood cell crenelation “in vivo” as morphological evidence of increased red blood cell viscosity in low flow states. Resuscitation. 1983;10:305–16.

    Article  CAS  PubMed  Google Scholar 

  44. Astiz ME, DeGent GE, Lin RY, Rackow EC. Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med. 1995;23:265–71.

    Article  CAS  PubMed  Google Scholar 

  45. Kirschenbaum LA, Astiz ME, Rackow EC, Saha DC, Lin R. Microvascular response in patients with cardiogenic shock. Crit Care Med. 2000;28:1290–4.

    Article  CAS  PubMed  Google Scholar 

  46. Korbut R, Gryglewski RJ. The effect of prostacyclin and nitric oxide on deformability of red blood cells in septic shock in rats. J Physiol Pharmacol. 1996;47:591–9.

    CAS  PubMed  Google Scholar 

  47. Shires III GT, Peitzman AB, Illner H, Shires GT. Changes in red blood cell transmembrane potential, electrolytes, and energy content in septic shock. J Trauma. 1983;23:769–74.

    Article  CAS  PubMed  Google Scholar 

  48. Chaudry IH, Clemens MG, Baue AE. Alterations in cell function with ischemia and shock and their correction. Arch Surg. 1981;116:1309–17.

    Article  CAS  PubMed  Google Scholar 

  49. Eastridge BJ, Darlington DN, Evans JA, Gann DS. A circulating shock protein depolarizes cells in hemorrhage and sepsis. Ann Surg. 1994;219:298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Borchelt BD, Wright PA, Evans JA, Gann DS. Cell swelling and depolarization in hemorrhagic shock. J Trauma. 1995;39:187–92.

    Article  CAS  PubMed  Google Scholar 

  51. Mayer B, Oberbauer R. Mitochondrial regulation of apoptosis. News Physiol Sci. 2003;18:89–94.

    CAS  PubMed  Google Scholar 

  52. Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17:219–37.

    Article  CAS  PubMed  Google Scholar 

  53. Hubbard WJ, Bland KI, Chaudry IH. The role of the mitochondrion in trauma and shock. Shock. 2004;22:395–402.

    Article  CAS  PubMed  Google Scholar 

  54. Boulos M, Astiz ME, Barua RS, Osman M. Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Crit Care Med. 2003;31:353–8.

    Article  CAS  PubMed  Google Scholar 

  55. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23.

    Article  CAS  PubMed  Google Scholar 

  56. Alexander JH, Reynolds HR, Stebbins AL, Dzavik V, Harrington RA, Van de Werf F, et al. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA. 2007;297(15):1657–66.

    Article  CAS  PubMed  Google Scholar 

  57. Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004;32:21–30.

    Article  CAS  PubMed  Google Scholar 

  58. de Boer JP, Wolbink GJ, Thijs LG, Baars JW, Wagstaff J, Hack CE. Interplay of complement and cytokines in the pathogenesis of septic shock. Immunopharmacology. 1992;24:135–48.

    Article  PubMed  Google Scholar 

  59. Offner F, Philippe J, Vogelaers D, Colardyn F, Baele G, Baudrihaye M, et al. Serum tumor necrosis factor levels in patients with infectious disease and septic shock. J Lab Clin Med. 1990;116:100–5.

    CAS  PubMed  Google Scholar 

  60. Blalock A. Shock: further studies with particular reference to the effects of hemorrhage. Arch Surg. 1937;29:837.

    Article  Google Scholar 

  61. Babaev A, Frederick PD, Pasta DJ, Every N, Sichrovsky T, Hochman JS. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2005;294(4):448–54.

    Article  CAS  PubMed  Google Scholar 

  62. Fox KA, Anderson Jr FA, Dabbous OH, Steg PG, Lopez-Sendon J, Van de WF, et al. Intervention in acute coronary syndromes: do patients undergo intervention on the basis of their risk characteristics? The Global Registry of Acute Coronary Events (GRACE). Heart. 2007;93:177–82.

    Article  CAS  PubMed  Google Scholar 

  63. Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med. 1999;341:625–34.

    Article  CAS  PubMed  Google Scholar 

  64. Wood KE. Major pulmonary embolism: review of a pathophysiologic approach to the golden hour of hemodynamically significant pulmonary embolism. Chest. 2002;121:877–905.

    Article  PubMed  Google Scholar 

  65. Ionescu A, Wilde P, Karsch KR. Localized pericardial tamponade: difficult echocardiographic diagnosis of a rare complication after cardiac surgery. J Am Soc Echocardiogr. 2001;14:1220–3.

    Article  CAS  PubMed  Google Scholar 

  66. Fowler NO. Cardiac tamponade. A clinical or an echocardiographic diagnosis? Circulation. 1993;87:1738–41.

    Article  CAS  PubMed  Google Scholar 

  67. Brown AF. Therapeutic controversies in the management of acute anaphylaxis. J Accid Emerg Med. 1998;15:89–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mink S, Becker A, Sharma S, Unruh H, Duke K, Kepron W. Role of autacoids in cardiovascular collapse in anaphylactic shock in anaesthetized dogs. Cardiovasc Res. 1999;43:173–82.

    Google Scholar 

  69. Zipnick RI, Scalea TM, Trooskin SZ, Sclafani SJ, Emad B, Shah A, et al. Hemodynamic responses to penetrating spinal cord injuries. J Trauma. 1993;35:578–82.

    Article  CAS  PubMed  Google Scholar 

  70. Savitsky E, Votey S. Emergency department approach to acute thoracolumbar spine injury. J Emerg Med. 1997;15:49–60.

    Article  CAS  PubMed  Google Scholar 

  71. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–6.

    Article  PubMed  Google Scholar 

  72. Jones AE. Lactate clearance for assessing response to resuscitation in severe sepsis. Acad Emerg Med. 2013;20:844–7.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Labovitz AJ, Noble VE, Bierig M, Goldstein SA, Jones R, Kort S, et al. Focused cardiac ultrasound in the emergent setting: a consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. J Am Soc Echocardiogr. 2010;23:1225–30.

    Article  PubMed  Google Scholar 

  74. Schmidt GA, Koenig S, Mayo PH. Shock: ultrasound to guide diagnosis and therapy. Chest. 2012;142:1042–8.

    Article  PubMed  Google Scholar 

  75. Kanji HD, McCallum J, Sirounis D, MacRedmond R, Moss R, Boyd JH. Limited echocardiography-guided therapy in subacute shock is associated with change in management and improved outcomes. J Crit Care. 2014;29:700–5.

    Article  PubMed  Google Scholar 

  76. Ebihara S, Hussain SN, Danialou G, Cho WK, Gofffried SB, Petrof BJ. Mechanical ventilation protects against diaphragm injury in sepsis: interaction of oxidative and mechanical stresses. Am J Respir Crit Care Med. 2002;165:221–8.

    Article  PubMed  Google Scholar 

  77. Bridges N, Jarquin-Valdivia AA. Use of the Trendelenburg position as the resuscitation position: to T or not to T? Am J Crit Care. 2005;14:364–8.

    PubMed  Google Scholar 

  78. Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G. Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest. 2002;121:1245–52.

    Article  PubMed  Google Scholar 

  79. Cavallaro F, Sandroni C, Marano C, La Torre G, Mannocci A, De Waure C, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36:1475–83.

    Article  PubMed  Google Scholar 

  80. Finfer S, Norton R, Bellomo R, Boyce N, French J, Myburgh J. The SAFE study: saline vs. albumin for fluid resuscitation in the critically ill. Vox Sang. 2004;87 Suppl 2:123–31.

    Article  PubMed  Google Scholar 

  81. Finfer S, McEvoy S, Bellomo R, McArthur C, Myburgh J, Norton R. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37:86–96.

    Article  PubMed  Google Scholar 

  82. Kellum JA, Pinsky MR. Use of vasopressor agents in critically ill patients. Curr Opin Crit Care. 2002;8:236–41.

    Article  PubMed  Google Scholar 

  83. Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364:2483–95.

    Article  CAS  PubMed  Google Scholar 

  84. Arlati S, Storti E, Pradella V, Bucci L, Vitolo A, Pulici M. Decreased fluid volume to reduce organ damage: a new approach to burn shock resuscitation? A preliminary study. Resuscitation. 2007;72:371–8.

    Article  CAS  PubMed  Google Scholar 

  85. Gavalas M, Sadana A, Metcalf S. Guidelines for the management of anaphylaxis in the emergency department. J Accid Emerg Med. 1998;15:96–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hurlbert RJ. Strategies of medical intervention in the management of acute spinal cord injury. Spine. 2006;31:S16–21.

    Article  PubMed  Google Scholar 

  87. Hurlbert RJ. The role of steroids in acute spinal cord injury: an evidence-based analysis. Spine. 2001;26:S39–46.

    Article  CAS  PubMed  Google Scholar 

  88. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA. 1997;277:1597–604.

    Article  CAS  PubMed  Google Scholar 

  89. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96.

    Article  PubMed  Google Scholar 

  90. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  91. The Veterans Administration Systemic Sepsis Cooperative Study Group. Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N Engl J Med. 1987;317:659–65.

    Article  Google Scholar 

  92. Sprung CL, Caralis PV, Marcial EH, Pierce M, Gelbard MA, Long WM, et al. The effects of high-dose corticosteroids in patients with septic shock. A prospective, controlled study. N Engl J Med. 1984;311:1137–43.

    Article  CAS  PubMed  Google Scholar 

  93. Bone RC, Fisher Jr CJ, Clemmer TP, Slotman GJ, Metz CA, Balk RA. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987;317:653–8.

    Article  CAS  PubMed  Google Scholar 

  94. Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med. 1998;26:645–50.

    Article  CAS  PubMed  Google Scholar 

  95. Briegel J, Forst H, Haller M, Schelling G, Kilger E, Kuprat G, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med. 1999;27:723–32.

    Article  CAS  PubMed  Google Scholar 

  96. Annane D, Sebille V, Charpentier C, Bollaert P-E, Francois B, Korach JM, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–71.

    Article  CAS  PubMed  Google Scholar 

  97. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–24.

    Article  CAS  PubMed  Google Scholar 

  98. Dellinger RP. Update on surviving sepsis guideline. In: 41st critical care congress. 2012.

    Google Scholar 

  99. Daugherty EL, Hongyan L, Taichman D, Hansen-Flaschen J, Fuchs BD. Abdominal compartment syndrome is common in medical intensive care unit patients receiving large-volume resuscitation. J Intensive Care Med. 2007;22:294–9.

    Article  PubMed  Google Scholar 

  100. Cotton BA, Guy JS, Morris Jr JA, Abumrad NN. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock. 2006;26:115–21.

    Article  CAS  PubMed  Google Scholar 

  101. Klein MB, Hayden D, Elson C, Nathens AB, Gamelli RL, Gibran NS, et al. The association between fluid administration and outcome following major burn: a multicenter study. Ann Surg. 2007;245:622–8.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Varela JE, Cohn SM, Diaz I, Giannotti GD, Proctor KG. Splanchnic perfusion during delayed, hypotensive, or aggressive fluid resuscitation from uncontrolled hemorrhage. Shock. 2003;20:476–80.

    Article  PubMed  Google Scholar 

  103. Lu YQ, Cai XJ, Gu LH, Wang Q, Huang WD, Bao DG. Experimental study of controlled fluid resuscitation in the treatment of severe and uncontrolled hemorrhagic shock. J Trauma. 2007;63:798–804.

    Article  PubMed  Google Scholar 

  104. Pepe PE, Dutton RP, Fowler RL. Preoperative resuscitation of the trauma patient. Curr Opin Anaesthesiol. 2008;21:216–21.

    Article  PubMed  Google Scholar 

  105. Holcomb JB, Jenkins D, Rhee P, Johannigman J, Mahoney P, Mehta S, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62:307–10.

    Article  PubMed  Google Scholar 

  106. Dente CJ, Shaz BH, Nicholas JM, Harris RS, Wyrzykowski AD, Patel S, et al. Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian level I trauma center. J Trauma. 2009;66:1616–24.

    Article  PubMed  Google Scholar 

  107. Kushimoto S, Miyauchi M, Yokota H, Kawai M. Damage control surgery and open abdominal management: recent advances and our approach. J Nippon Med Sch. 2009;76:280–90.

    Article  PubMed  Google Scholar 

  108. Urban P, Stauffer JC, Bleed D, Khatchatrian N, Amann W, Bertel O, et al. A randomized evaluation of early revascularization to treat shock complicating acute myocardial infarction. The (Swiss) Multicenter Trial of Angioplasty for Shock-(S)MASH. Eur Heart J. 1999;20:1030–8.

    Article  CAS  PubMed  Google Scholar 

  109. Wei JY, Hutchins GM, Bulkley BH. Papillary muscle rupture in fatal acute myocardial infarction: a potentially treatable form of cardiogenic shock. Ann Intern Med. 1979;90:149–52.

    Article  CAS  PubMed  Google Scholar 

  110. Jacobs AK, Leopold JA, Bates E, Mendes LA, Sleeper LA, White H, et al. Cardiogenic shock caused by right ventricular infarction: a report from the SHOCK registry. J Am Coll Cardiol. 2003;41:1273–9.

    Article  PubMed  Google Scholar 

  111. Brookes C, Ravn H, White P, Moeldrup U, Oldershaw P, Redington A. Acute right ventricular dilatation in response to ischemia significantly impairs left ventricular systolic performance. Circulation. 1999;100:761–7.

    Article  CAS  PubMed  Google Scholar 

  112. Tsang TS, Barnes ME, Hayes SN, Freeman WK, Dearani JA, Butler SL, et al. Clinical and echocardiographic characteristics of significant pericardial effusions following cardiothoracic surgery and outcomes of echo-guided pericardiocentesis for management: Mayo Clinic experience, 1979-1998. Chest. 1999;116:322–31.

    Article  CAS  PubMed  Google Scholar 

  113. Inaba K, Ives C, McClure K, Branco BC, Eckstein M, Shatz D, et al. Radiologic evaluation of alternative sites for needle decompression of tension pneumothorax. Arch Surg. 2012;147:813–8.

    PubMed  Google Scholar 

  114. Martin M, Satterly S, Inaba K, Blair K. Does needle thoracostomy provide adequate and effective decompression of tension pneumothorax? J Trauma Acute Care Surg. 2012;73:1412–7.

    Article  PubMed  Google Scholar 

  115. Fitzgerald M, Mackenzie CF, Marasco S, Hoyle R, Kossmann T. Pleural decompression and drainage during trauma reception and resuscitation. Injury. 2008;39:9–20.

    Article  CAS  PubMed  Google Scholar 

  116. Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation. 2011;123:1788–830.

    Article  PubMed  Google Scholar 

  117. McLintock C, Brighton T, Chunilal S, Dekker G, McDonnell N, McRae S, et al. Recommendations for the diagnosis and treatment of deep venous thrombosis and pulmonary embolism in pregnancy and the postpartum period. Aust N Z J Obstet Gynaecol. 2012;52:14–22.

    Article  PubMed  Google Scholar 

  118. Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 2001;7:204–11.

    Article  CAS  PubMed  Google Scholar 

  119. Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30:1572–8.

    Article  PubMed  Google Scholar 

  120. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.

    Article  PubMed  Google Scholar 

  121. Bakker J, Nijsten MW, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care. 2013;3:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Cohn SM. Near-infrared spectroscopy: potential clinical benefits in surgery. J Am Coll Surg. 2007;205:322–32.

    Article  PubMed  Google Scholar 

  123. Ward KR, Torres FI, Barbee RW, Torres L, Tiba MH, Reynolds PS, et al. Resonance Raman spectroscopy: a new technology for tissue oxygenation monitoring. Crit Care Med. 2006;34:792–9.

    Article  CAS  PubMed  Google Scholar 

  124. Verdant C, De Backer D. How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care. 2005;11:240–4.

    Article  PubMed  Google Scholar 

  125. Goedhart P, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15:15101–14.

    Article  CAS  PubMed  Google Scholar 

  126. Jarisch A. Kreislauffragen. Deutsche Medizinische Wochenschrift. 1928;29:1211–3.

    Article  Google Scholar 

  127. Cortez A, Zito J, Lucas CE, Gerrick SJ. Mechanism of inappropriate polyuria in septic patients. Arch Surg. 1977;112:471–6.

    Article  CAS  PubMed  Google Scholar 

  128. Rady MY, Smithline HA, Blake H, Nowak R, Rivers E. A comparison of the shock index and conventional vital signs to identify acute, critical illness in the emergency department. Ann Emerg Med. 1994;24:685–90.

    Article  CAS  PubMed  Google Scholar 

  129. Lehman LW, Saeed M, Talmor D, Mark R, Malhotra A. Methods of blood pressure measurement in the ICU. Crit Care Med. 2013;41:34–40.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pinsky MR. Targets for resuscitation from shock. Minerva Anestesiol. 2003;69:237–44.

    CAS  PubMed  Google Scholar 

  131. Donati A, Loggi S, Preiser JC, Orsetti G, Munch C, Gabbanelli V, et al. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132:1817–24.

    Article  PubMed  Google Scholar 

  132. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial. Crit Care. 2005;9:R687–93.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Neumar R, Ward KR. Adult resuscitation. In: Marx J, Hockberger R, Walls R, editors. Rosen’s emergency medicine: concepts and clinical practice. St. Louis: Mosby; 2002. p. 64–82.

    Google Scholar 

  134. Fink M, Gunnerson KJ. Shock and sepsis. In: Sellke F, del Nido P, Swanson S, editors. Sabiston and Spencer surgery of the chest. Philadelphia: Elsevier Saunders; 2005. p. 793–815.

    Google Scholar 

  135. van den Berg BM, Vink H, Spaan J. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003;92(6):592–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle J. Gunnerson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glazer, J.M., Rivers, E.P., Gunnerson, K.J. (2016). Shock. In: O'Donnell, J., Nácul, F. (eds) Surgical Intensive Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-19668-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19668-8_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19667-1

  • Online ISBN: 978-3-319-19668-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics