Skip to main content

Localization for \(\mathcal {N}=2\) Supersymmetric Gauge Theories in Four Dimensions

  • Chapter
  • First Online:
New Dualities of Supersymmetric Gauge Theories

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

We review the supersymmetric localization of \(\mathcal {N} = 2\) theories on curved backgrounds in four dimensions using \(\mathcal {N} = 2\) supergravity and generalized conformal Killing spinors. We review some known backgrounds and give examples of new geometries such as local \(T^2\)-bundle fibrations. We discuss in detail a topological four-sphere with generic \(T^2\)-invariant metric. This review is a contribution to the special volume on recent developments in \(\mathcal {N} = 2\) supersymmetric gauge theory and the 2d-4d relation.

A citation of the form [V:x] refers to article number x in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some \(\mathcal {N}=2\) supergravity literature the auxiliary scalar field M in Weyl multiplet is denoted D. For the conventions on the Clifford algebra see Appendix section “Clifford algebra”; the slash symbol on tensors denotes Clifford contraction as in Eq. (4.34).

  2. 2.

    In these notations the solution can be easily specialized to the Hama-Hosomichi ellipsoid [32] metrically defined by the equation in \(\mathbb R^5\) with the standard metric

    $$\begin{aligned} r_1^{-2} (X_1^2 + X_2^2) + r_2^{-2} (X_3^2 + X_4^2) + r^{-2} X_5^2 = 1 \end{aligned}$$

    by taking

    $$\begin{aligned} \begin{aligned} X_1 + \imath X_2 = r_1 \sin \rho \cos \theta e^{\imath \phi _1}, \quad X_3 + \imath X_4 = r_2 \sin \rho \sin \theta e^{\imath \phi _2}, \quad X_5 = r \cos \rho \end{aligned} \end{aligned}$$

    and

    $$\begin{aligned} \begin{aligned}&f_1(\theta , \rho ) = f_{\mathrm {HH}}(\theta ) = \sqrt{r_1^2 \sin ^2 \theta + r_2^2 \cos ^2 \theta } \\&f_2(\theta , \rho ) = g_{\mathrm {HH}}(\theta , \rho ) = \sqrt{r^2 \sin ^2 \rho + r_1^2 r_2^2 f_1(\theta )^{-2} \cos ^2 \rho }\\&f_3(\theta , \rho ) =h_{\mathrm {HH}}(\theta , \rho ) = (-r_1^2 + r_2^2) f_1(\theta )^{-1} \cos \theta \sin \theta \cos \rho \end{aligned} \end{aligned}$$

    In the case of round sphere \(S^4\) we set

    $$\begin{aligned} f_1(\theta , \rho ) = r \qquad f_2 (\theta , \rho ) = r \qquad f_3(\theta , \rho ) = 0. \end{aligned}$$
  3. 3.

    In the Eq. (3.7) \(\varepsilon ^i\) denotes the \(+1\) chiral 6d spinors and \(\gamma ^m\) for the 6d gamma-matrices, while in the Eq. (3.6) the components of the spinor \(\varepsilon ^{i}\) are presented with respect to the 4d Clifford algebra representation (4.69).

  4. 4.

    For a generic compact simple Lie group G the integer k classifies the topology of G-bundle on \(S^4\) by \(\pi _{3}(G) = {\mathbb Z}\). The instanton number k can be computed as

    $$\begin{aligned} k = \frac{1}{8 \pi ^2} \int _{M} \langle F, \wedge F\rangle = - \frac{1}{16 \pi ^2 h^{\vee }} \int _{M} {{\mathrm{Tr}}}_{\mathrm {adj}} F \wedge F \end{aligned}$$

    in the conventions where F is \(\mathfrak {g}\)-valued two-form, \(\langle , \rangle \) is the invariant positive definite bilinear form on \(\mathfrak {g}\) induced from the standard bilinear form on \({\mathfrak {h}}^{*}\) in which long roots have length squared 2, the \({{\mathrm{Tr}}}_{\mathrm {adj}}\) is the trace in adjoint representation, and \(h^{\vee }\) is the dual Coxeter number for \(\mathfrak {g}\). For \(G = {\textit{SU(n)}}\) the instanton charge k is the second Chern class \(k = c_2\).

  5. 5.

    In our conventions \(\Phi _6\) is an element of the Lie algebra of the gauge group. For \({\textit{U(N)}}\) gauge group \(\Phi _6\) is represented by anti-Hermitian matrices. The bilinear form \(\left\langle , \right\rangle \) is the positive definite invariant metric on the Lie algebra normalized such that the length squared of the long root is 2. For \({\textit{U(N)}}\) group \( {{\mathrm{tr}}}_{\mathrm {f}} \Phi ^2 = {-}\left\langle \Phi , \Phi \right\rangle \).

  6. 6.

    We construct the Lagrangian and supersymmetry algebra using only holomorphic/algebraic dependence on the spinorial components. In other words, the complex conjugate of gaugino \((\lambda ^i)\) never appears neither in the Lagrangian, nor in the measure of the path integral, nor in the supersymmetry transformations. The fermionic analogue of the contour of integration in the path integral or the reality condition is not necessary since evaluation the Pfaffian or top degree form is an algebraic operation.

  7. 7.

    Often in the physics literature the dual spinor \(\eta _{\beta } = \eta ^{\alpha }C_{\alpha \beta }\) (an element of the dual space \(\mathcal {S}^{\vee }\)) is denoted \(\bar{\varepsilon }\) and is called Majorana conjugate to \(\varepsilon \). We have chosen here to avoid the bar notation to avoid confusion with complex conjugation.

  8. 8.

    Consistent with the fact that for \(\tfrac{d}{2} \in 2{\mathbb Z}\) the tensor product \(\mathcal {S}_{+} \otimes \mathcal {S}_{-}\) contains odd rank forms; and \( \mathcal {S}_{+} \otimes \mathcal {S}_{+}, \mathcal {S}_{-} \otimes \mathcal {S}_{-}\) contains even rank forms; in particular for \(\tfrac{d}{2} \in 2 {\mathbb Z}\) the representation \(\mathcal {S}^{\pm }\) is dual to \(\mathcal {S}^{\pm }\); while for \(\tfrac{d}{2} \in 2 {\mathbb Z}+ 1\) the representation \(\mathcal {S}^{\pm }\) is dual to \(\mathcal {S}^{\mp }\).

References

  1. Sklyanin, E., Faddeev, L.: Quantum mechanical approach to completely integrable field theory models. Sov. Phys. Dokl. 23, 902–904 (1978)

    Google Scholar 

  2. Drinfeld, V.G.: Hopf algebras and the quantum Yang-Baxter equation. Dokl. Akad. Nauk SSSR 283(5), 1060–1064 (1985)

    MathSciNet  Google Scholar 

  3. Jimbo, M.: A \(q\)-difference analogue of \(U({\mathfrak{g}})\) and the Yang-Baxter equation. Lett. Math. Phys. 10(1), 63–69 (1985). doi:10.1007/BF00704588

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N \(=\) 2 supersymmetric Yang-Mills theory. Nucl. Phys. B426, 19–52 (1994). arXiv:hep-th/9407087 [hep-th]

  5. Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984). doi:10.1016/0040-9383(84)90021-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982)

    MATH  Google Scholar 

  7. Witten, E.: Topological sigma models. Commun. Math. Phys. 118, 411 (1988)

    Article  ADS  MATH  Google Scholar 

  8. Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)

    Article  ADS  MATH  Google Scholar 

  9. Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004). arXiv:hep-th/0206161 [hep-th]. To Arkady Vainshtein on his 60th anniversary

    Google Scholar 

  10. Losev, A., Nekrasov, E., Shatashvili, S.L.: Issues in topological gauge theory. Nucl. Phys. B534, 549–611 (1998) arXiv:hep-th/9711108 [hep-th]

    Google Scholar 

  11. Moore, G.W., Nekrasov, N., Shatashvili, S.: Integrating over Higgs branches. Commun. Math. Phys. 209, 97–121 (2000) arXiv:hep-th/9712241 [hep-th]

    Google Scholar 

  12. Lossev, A., Nekrasov, N., Shatashvili, S.L.: Testing Seiberg-Witten solution. arXiv:hep-th/9801061 [hep-th]

  13. Losev, A., Moore, G.W., Nekrasov, N., Shatashvili, S.: Four-dimensional avatars of two-dimensional RCFT. Nucl. Phys. Proc. Suppl. 46, 130–145 (1996). arXiv:hep-th/9509151

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Faddeev, L., Reshetikhin, N.Y., Takhtajan, L.: Quantization of Lie groups and Lie algebras. Leningr. Math. J. 1, 193–225 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Nekrasov, N., Pestun, V.: Seiberg-Witten geometry of four dimensional N \(=\) 2 quiver gauge theories. arXiv:1211.2240 [hep-th]

  16. Nekrasov, N., Pestun, V., Shatashvili, S.: Quantum geometry and quiver gauge theories. arXiv:1312.6689 [hep-th]

  17. Nekrasov, N.: On the BPS/CFT correspondence, February 3, 2004. http://www.science.uva.nl/research/itf/strings/stringseminar2003-4.html. Lecture at the string theory group seminar, University of Amsterdam

  18. Nakajima, H.: Gauge theory on resolutions of simple singularities and simple Lie algebras. Int. Math. Res. Not. 2, 61–74 (1994). doi:10.1155/S1073792894000085

    Article  Google Scholar 

  19. Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998). doi:10.1215/S0012-7094-98-09120-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Vafa, C., Witten, E.: A strong coupling test of S duality. Nucl. Phys. B431, 3–77 (1994). arXiv:hep-th/9408074 [hep-th]

    Google Scholar 

  21. Losev, A.S., Marshakov, A., Nekrasov, N.A.: Small instantons, little strings and free fermions. arXiv:hep-th/0302191 [hep-th]

  22. Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions. arXiv:hep-th/0306238 [hep-th]

  23. Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. arXiv:0712.2824 [hep-th]

  24. Gomis, J., Okuda, T., Pestun, V.: Exact results for ’t Hooft loops in gauge theories on \(S^4\). arXiv:1105.2568 [hep-th]

  25. Kapustin, A., Willett, B., Yaakov, I.: Exact results for Wilson loops in superconformal Chern-Simons theories with matter. JHEP 1003, 089 (2010). arXiv:0909.4559 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  26. Benini, F., Cremonesi, S.: Partition functions of N = (2,2) gauge theories on S\(^{2}\) and vortices. arXiv:1206.2356 [hep-th]

  27. Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact results in D \(=\) 2 supersymmetric gauge theories. JHEP 1305, 093 (2013). arXiv:1206.2606 [hep-th]

    Article  ADS  Google Scholar 

  28. Kallen, J., Qiu, J., Zabzine, M.: The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere. JHEP 1208, 157 (2012). arXiv:1206.6008 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  29. Kim, H.-C., Kim, S.: M5-branes from gauge theories on the 5-sphere. JHEP 1305, 144 (2013). arXiv:1206.6339 [hep-th]

    Article  ADS  Google Scholar 

  30. Hama, N., Hosomichi, K., Lee, S.: SUSY gauge theories on squashed three-spheres. JHEP 1105, 014 (2011). arXiv:1102.4716 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  31. Imamura, Y., Yokoyama, D.: N = 2 supersymmetric theories on squashed three-sphere. Phys. Rev. D85, 025015 (2012). arXiv:1109.4734 [hep-th]

  32. Hama, N., Hosomichi, K.: Seiberg-Witten theories on ellipsoids. JHEP 1209, 033 (2012). arXiv:1206.6359 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  33. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219 [hep-th]

    Google Scholar 

  34. Festuccia, G., Seiberg, N.: Rigid supersymmetric theories in curved superspace. JHEP 1106, 114 (2011). arXiv:1105.0689 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  35. de Wit, B., Van Holten, J., Van Proeyen, A.: Transformation rules of N = 2 supergravity multiplets. Nucl. Phys. B167, 186 (1980)

    Google Scholar 

  36. de Wit, B., Van Holten, J., Van Proeyen, A.: Structure of N = 2 supergravity. Nucl. Phys. B184, 77 (1981)

    Google Scholar 

  37. de Wit, B., Lauwers, P., Van Proeyen, A.: Lagrangians of N \(=\) 2 supergravity - matter systems. Nucl. Phys. B255, 569 (1985)

    Google Scholar 

  38. de Wit, B., Lauwers, P., Philippe, R., Van Proeyen, A.: Noncompact N = 2 supergravity. Phys. Lett. B135, 295 (1984)

    Google Scholar 

  39. Mohaupt, T.: Black hole entropy, special geometry and strings. Fortsch. Phys. 49, 3–161 (2001). arXiv:hep-th/0007195 [hep-th]

  40. Freedman, D.Z., Van Proeyen, A.: Supergravity. Cambridge University Press, Cambridge (2012). doi:10.1017/CBO9781139026833

  41. Gupta, R.K., Murthy, S.: All solutions of the localization equations for N = 2 quantum black hole entropy. JHEP 1302, 141 (2013). arXiv:1208.6221 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  42. Dabholkar, A., Gomes, J., Murthy, S.: Quantum black holes, localization and the topological string. JHEP 1106, 019 (2011). arXiv:1012.0265 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  43. Klare, C., Zaffaroni, A.: Extended supersymmetry on curved spaces. JHEP 1310, 218 (2013). arXiv:1308.1102 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  44. Proeyen, A.V.: Lectures on N \(=\) 2 supergravity. http://itf.fys.kuleuven.be/~toine/LectParis.pdf

  45. Dumitrescu, T.T., Festuccia, G., Seiberg, N.: Exploring curved superspace. JHEP 1208, 141 (2012). arXiv:1205.1115 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  46. Nakajima, H., Yoshioka, K.: Lectures on instanton counting, ArXiv Mathematics e-prints (2003). arXiv:math/0311058

  47. Nosaka, T., Terashima, S.: Supersymmetric gauge theories on a squashed four-sphere. JHEP 1312, 001 (2013). arXiv:1310.5939 [hep-th]

    Article  ADS  Google Scholar 

  48. Vartanov, G., Teschner, J.: Supersymmetric gauge theories, quantization of moduli spaces of flat connections, and conformal field theory. arXiv:1302.3778 [hep-th]

  49. Nekrasov, N., Witten, E.: The omega deformation, branes, integrability, and Liouville theory. JHEP 1009, 092 (2010). arXiv:1002.0888 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  50. Kinney, J., Maldacena, J.M., Minwalla, S., Raju, S.: An Index for 4 dimensional super conformal theories. Commun. Math. Phys. 275 209–254 (2007). arXiv:hep-th/0510251 [hep-th]

    Google Scholar 

  51. Romelsberger, C.: Counting chiral primaries in N \(=\) 4 superconformal field theories. Nucl. Phys. B747, 329–353 (2006). arXiv:hep-th/0510060 [hep-th]

  52. Dolan, F., Osborn, H.: Applications of the superconformal index for protected operators and q-hypergeometric identities to N = 1 dual theories. Nucl. Phys. B818, 137–178 (2009). arXiv:0801.4947 [hep-th]

  53. Dolan, F., Spiridonov, V., Vartanov, G.: From 4d superconformal indices to 3d partition functions. Phys. Lett. B704, 234–241 (2011). arXiv:1104.1787 [hep-th]

    Google Scholar 

  54. Gadde, A., Rastelli, L., Razamat, S.S., Yan, W.: Gauge theories and Macdonald polynomials. Commun. Math. Phys. 319, 147–193 (2013). arXiv:1110.3740 [hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Witten, E.: Two-dimensional gauge theories revisited. J. Geom. Phys. 9, 303–368 (1992). arXiv:hep-th/9204083 [hep-th]

    Google Scholar 

  56. Atiyah, M.F., Jeffrey, L.: Topological Lagrangians and cohomology. J. Geom. Phys. 7(1), 119–136 (1990). doi:10.1016/0393-0440(90)90023-V

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Cordes, S., Moore, G.W., Ramgoolam, S.: Lectures on 2-d Yang-Mills theory, equivariant cohomology and topological field theories. Nucl. Phys. Proc. Suppl. 41, 184–244 (1995). arXiv:hep-th/9411210 [hep-th]

    Google Scholar 

  58. Pestun, V.: Localization of the four-dimensional N \(=\) 4 SYM to a two-sphere and 1/8 BPS Wilson loops, 49pp. arXiv:0906.0638 [hep-th]

  59. Atiyah, M.F.: Elliptic Operators and Compact Groups. Lecture Notes in Mathematics, vol. 401. Springer, Berlin (1974)

    Google Scholar 

  60. Kennedy, A.: Clifford algebras in two omega dimensions. J. Math. Phys. 22, 1330–1337 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily Pestun .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Conventions and Useful Identities

1.1 Indices

For the 4d theories with 8 supercharges (\(\mathcal {N}=2\) supersymmetry in 4d) we use the notations of the (0, 1) 6d supersymmetric theories under the dimensional reduction. The Table 4 summarizes the index notations.

Table 4 Indices

The symmetrization and anti-symmetrization of tensors

$$\begin{aligned} \begin{aligned} t_{(m_1 \dots m_r)}&= \tfrac{1}{r!} \sum _{\sigma \in \text {Perm}(r)} t_{m_{\sigma (1)}, \ldots m_{\sigma (r)}}\\ t_{[m_1 \dots m_r]}&= \tfrac{1}{r!} \sum _{\sigma \in \text {Perm}(r)} (-1)^{\sigma } t_{m_{\sigma (1)}, \ldots m_{\sigma (r)}} \end{aligned} \end{aligned}$$
(4.25)

1.2 Spinors

The spinors \(\lambda \) and \(\varepsilon \) in the (0, 1) Euclidean supersymmetric 6d theory are the holomorphic \({\textit{SU(2)}}_\mathrm {R}\simeq {\textit{Sp(1)}}_\mathrm {R}\) doublets of Weyl four-component spinors, of Weyl chirality \(+1\), for the 6d Clifford algebra over complex numbers \({\mathbb C}\). We take \(\lambda \equiv (\lambda ^i)_{i = 1,2}\) where each \(\lambda ^1\) and \(\lambda ^2\) is 6d Weyl fermion. In total the spinor \(\lambda \) has 8 complex components.Footnote 6

1.3 Clifford Algebra

The \(8 \times 8\) complex matrices \(\gamma _m\) represent the 6d Clifford algebra

$$\begin{aligned} \{ \gamma _{m}, \gamma _{n} \} = 2 g_{mn} \end{aligned}$$
(4.26)

The chirality operator \(\gamma _{*}^{\mathrm {6d}}\) anticommuting with all \(\gamma _m\) is

$$\begin{aligned} \gamma _{*} = i \gamma _1 \dots \gamma _{6}; \qquad \{\gamma _{*} , \gamma _m\} = 0; \qquad \gamma _*^2 = 1. \end{aligned}$$
(4.27)

The chirality of the spinors is the eigenvalue of \(\gamma _*\). The projection operators that split \(\mathcal {S} = \mathcal {S}^{+} \oplus \mathcal {S}^{-}\) are

$$\begin{aligned} \gamma _{\pm } = \tfrac{1}{2} (1 \pm \gamma _{*}),\qquad \varepsilon _{\pm } = \gamma _{\pm } \varepsilon _{\pm } =\pm \gamma _{*} \varepsilon _{\pm } \end{aligned}$$
(4.28)

Explicit form of \(\gamma _m\) matrices is not needed, but for concreteness one can recursively define the \(\gamma ^{(d)}_m\) matrices of size \(2^{d/2} \times 2^{d/2}\) in even dimension d in terms of \(\gamma ^{(d-2)}_m\) as follows (see e.g. [60])

$$\begin{aligned} \begin{aligned}&\gamma ^{(d)}_m = \sigma _{3} \otimes \gamma _{m}^{(d-2)}, \quad m \in [1, \dots , d- 2] \\&\gamma ^{(d)}_{d-1} = \sigma _{1} \otimes 1, \qquad \gamma ^{(d)}_{d} = \sigma _{2} \otimes 1 \\&\gamma ^{(d)}_{*} = \sigma _3 \otimes \gamma ^{(d-2)}_{*} \end{aligned} \end{aligned}$$
(4.29)

where \((\sigma _0, \sigma _1,\sigma _2,\sigma _3)\) are the \(2 \times 2\) Pauli matrices

$$\begin{aligned} (\sigma _0,\sigma _1,\sigma _2,\sigma _3) = \left( \left( {\begin{matrix} 1 &{} 0 \\ 0 &{} 1 \end{matrix}}\right) , \left( {\begin{matrix} 0 &{} 1 \\ 1 &{} 0 \end{matrix}}\right) , \left( {\begin{matrix} 0 &{} -i \\ i &{} 0 \end{matrix}}\right) , \left( {\begin{matrix} 1 &{} 0 \\ 0 &{} -1 \end{matrix}}\right) \right) . \end{aligned}$$
(4.30)

We use antisymmetric multi-index notations

$$\begin{aligned} \gamma _{m_1 \dots m_r} = \gamma _{[m_1} \dots \gamma _{m_r]}. \end{aligned}$$
(4.31)

and we use underline notation for the multi-index

$$\begin{aligned} \gamma _{\underline{r}} \quad \text {is one of} \quad \gamma _{m_1 \dots m_r} \end{aligned}$$
(4.32)

In the contraction of multi-index we use non-repetitive summation

$$\begin{aligned} A^{\underline{p}}{} B_{\underline{p}} \equiv \sum _{m_{1} < \dots < m_{p}} A^{m_1 \dots m_p} B_{m_1 \dots m_p} = \frac{1}{p!}A^{m_1 \dots m_p} B_{m_1 \dots m_p} \end{aligned}$$
(4.33)

For the forms we use component and slashed notation

(4.34)

Contraction identity

$$\begin{aligned} \gamma ^{m} \gamma _{\underline{r}} \gamma _m = (-1)^{r} (d - 2r) \gamma _{\underline{r}} \end{aligned}$$
(4.35)

Multi-index contraction identity

$$\begin{aligned} \gamma ^{\underline{p}} \gamma _{\underline{r}}\gamma _{\underline{p}} = \Delta (d,r,p) \gamma _{\underline{r}} \end{aligned}$$
(4.36)

with

$$\begin{aligned} \Delta (d,r,p)= (-1)^{p(p-1)/2} (-1)^{rp} \sum _{q=\mathrm {max}(p+r-d,0)}^{\mathrm {min}(r,p)} (-1)^{q} \left( {\begin{array}{c}r\\ q\end{array}}\right) \left( {\begin{array}{c}d-r\\ p-q\end{array}}\right) \end{aligned}$$
(4.37)

The contraction formula and the completeness of \((\gamma _{\underline{p}})_{p \in [0,\dots , d]}\) for \(d \in 2 {\mathbb Z}\) in the matrix algebra of \(2 ^{d/2} \times 2^{d/2}\) matrices implies the Fierz identity

$$\begin{aligned} (\gamma ^{\underline{r}}) ^{\alpha _1}_{\,\,\alpha _2} (\gamma _{\underline{r}})^{\alpha _3}_{\,\,\,\alpha _4} = \sum _{k=0}^{d} \tilde{\Delta }(d,r,k) (\gamma ^{\underline{k}})^{\alpha _1}_{\,\,\ \alpha _4} (\gamma _{\underline{k}})^{\alpha _3}_{\,\,\, \alpha _2} \end{aligned}$$
(4.38)

where

$$\begin{aligned} \tilde{\Delta }(d,r,k) = (-1)^{ \frac{k(k-1)}{2}} 2^{- \frac{d}{2}} \Delta (d,r,k) \end{aligned}$$
(4.39)

The terms with \(k > \frac{d}{2}\) in the Fierz identity are conveniently represented as

$$\begin{aligned} \gamma _{\underline{k}} \gamma _{*} = (-1)^{r(r-1)/2} i^{-n/2} \gamma _{\underline{k}^\vee } \end{aligned}$$
(4.40)

where \(\gamma _{\underline{k}^{\vee }}\) is complementary in indices of \(\gamma _{\underline{k}}\) with a proper permutation sign. The Fierz identity is

$$\begin{aligned}&(\gamma ^{\underline{l}}) ^{\alpha _1}_{\,\,\alpha _2} (\gamma _{\underline{l}})^{\alpha _3}_{\,\,\,\alpha _4} = \sum _{k=0}^{d/2} \tilde{\Delta }(d,l,k) (\gamma ^{\underline{k}})^{\alpha _1}_{\,\,\ \alpha _4} (\gamma _{\underline{k}})^{\alpha _3}_{\,\,\, \alpha _2}\nonumber \\&\qquad \qquad \qquad \qquad \qquad + (-1)^{d/2} \sum _{k=0}^{d/2 - 1} \tilde{\Delta }(d,l,d- k) (\gamma ^{\underline{k}} \gamma _*)^{\alpha _1}_{\,\,\ \alpha _4} (\gamma _{\underline{k}} \gamma _*)^{\alpha _3}_{\,\,\, \alpha _2}. \end{aligned}$$
(4.41)

This form is useful when applied to the chiral spinors.

1.4 Spinor Bilinears

The spinor representation space \(\mathcal {S}\) can be equipped with an invariant complex bilinear form \((, ): \mathcal {S} \otimes \mathcal {S} \rightarrow {\mathbb C}\). In components we writeFootnote 7

$$\begin{aligned} ({\eta } \varepsilon ) := \eta ^{\alpha } C_{\alpha \beta } \varepsilon ^{\beta } \end{aligned}$$
(4.42)

where C is a matrix representing the bilinear form.

All operators \( \gamma _{\underline{r}} \) are symmetric or antisymmetric with respect to C. The symmetry of \(C \gamma _{\underline{r}}\) depends on the dimension d and is summarized in Table 5.

Table 5 Symmetries of \(C\gamma _{\underline{r}}\)

The entries \(s_0 s_1 s_2 s_3\) with \(s_{r} = \pm 1\) denote the transposition symmetry of \(C\gamma _{\underline{r}}\) for . There are two choices of C denoted by \(C_1\) and \(C_2\) in the table. In representation (4.29) one can take

$$\begin{aligned} \begin{aligned} C_1 = \cdots \otimes \sigma _1 \otimes \sigma _2 \otimes \sigma _1 \\ C_2 = \cdots \otimes \sigma _2 \otimes \sigma _1 \otimes \sigma _2. \end{aligned} \end{aligned}$$
(4.43)

The bilinear form \(C_2\) for spinors in even dimension d can be also used as the bilinear form for spinors in \(d+1\)-dimensions. For the theories with 8 supercharges in \(d=4,5,6\) dimensions we are using C highlighted in the Table 5.

The matrices \(C\gamma _{\underline{r}}\) represent bilinear forms on \(\mathcal {S}\) valued in r-forms, in other words, for spinors \(\eta \) and \(\varepsilon \) the

$$\begin{aligned} \omega _{\underline{r}}= ({\eta } \gamma _{\underline{r}} \varepsilon ) \end{aligned}$$
(4.44)

transform covariantly as the rank r form. Since

$$\begin{aligned} \gamma _{*} C = (-1)^{\tfrac{d}{2} } C \gamma _* \end{aligned}$$
(4.45)

it follows thatFootnote 8

$$\begin{aligned} \begin{aligned} ({\eta } \gamma _{\underline{r}} \epsilon )&=( {\eta _{+}} \gamma _{\underline{r}} \epsilon _{+}) + ({\eta _{-}} \gamma _{\underline{r}} \epsilon _{-}), \qquad \tfrac{d}{2} + r \in 2 {\mathbb Z}\\ ( { \eta } \gamma _{\underline{r}} \epsilon )&= ({\eta _{-}} \gamma _{\underline{r}} \epsilon _{+}) + ({\eta _{+}} \gamma _{\underline{r}} \epsilon _{-}), \qquad \tfrac{d}{2} + r \in 2 {\mathbb Z}+ 1 \end{aligned} \end{aligned}$$
(4.46)

In \(d=6\) the bilinears in the spinors of the same chirality transform as forms of odd rank; while the bilinears in the spinors of opposite chirality transform as forms of even rank.

$$\begin{aligned} d=6: \qquad {\left\{ \begin{array}{ll} ({\varepsilon _+} \gamma _{\underline{r}} \varepsilon _+') \ne 0 \quad \text {only for } r \in \{1,3,5\} \\ ( {\eta _{-}} \gamma _{\underline{r}} \varepsilon _{+}) \ne 0 \quad \text {only for } r \in \{0,2,4,6\} \end{array}\right. } \end{aligned}$$
(4.47)

The bilinear form valued in 1-forms is antisymmetric in \(d=6\) for either choice of C. To construct the standard fermionic action \((\lambda \gamma ^m D_m \lambda )\) we need the symmetric 1-form valued bilinear form. For the minimal 6d (0, 1) supersymmetry we introduce a \({\textit{SU(2)}}_{\mathrm {R}}\)-doublet of Weyl fermions \((\lambda ^{i})_{i=1,2}\) and then use \(C \otimes \epsilon \), where \(\epsilon = \epsilon _{ij}\) is the standard \(2\times 2\) antisymmetric symbol, as the symmetric bilinear form on the \(\mathcal {S^{+}}\otimes {\mathbb C}^{2}\). The resulting 1-form valued bilinear is symmetric and there is a proper fermionic kinetic action

(4.48)

We use the standard antisymmetric \(2 \times 2\) tensor \(\epsilon _{ij}\) to raise and lower the \({\textit{SU(2)}}_\mathrm {R}\) indices ij in the pattern \(^i{}_i\):

$$\begin{aligned} \begin{aligned}&\lambda ^{i} := \epsilon ^{ij} \lambda _{j}, \qquad \lambda _{j} := \lambda ^{i} \epsilon _{ij}\\&\epsilon ^{ij} \epsilon _{ik} = \delta ^{j}_{k}, \qquad ( {\varepsilon }^{[j} \eta ^{i]}) = \tfrac{1}{2} \epsilon ^{ij} ({\varepsilon }^k \eta _k) \end{aligned} \end{aligned}$$
(4.49)

When the \({\textit{SU(2)}}_\mathrm {R}\) indices are omitted, the contraction \(^i{}_i\) is assumed

$$\begin{aligned} ({\varepsilon } \gamma _{\underline{r}} \varepsilon ') \equiv ( {\varepsilon }^{i} \gamma _{\underline{r}} \varepsilon '_i) \end{aligned}$$
(4.50)

1.5 \(d=6\) Fierz Identities

For \(d=6\) and \(l=1\) we find

k

0

1

2

3

4

5

6

\(\tilde{\Delta }(6,1,k)\)

\( \tfrac{3}{4} \)

\(-\tfrac{1}{2}\)

\(-\tfrac{1}{4}\)

0

\( -\frac{1}{4} \)

\(\frac{1}{2}\)

\(\tfrac{3}{4}^{}\)

Notice that \(\tilde{\Delta }(6,1,k) = (-1)^k \tilde{\Delta }(6,1,6-k)\). Therefore if we project Fierz identity (4.41) with \(\gamma _{+}\) applied to the \(\alpha _2\) and \(\alpha _4\) indices, we find that terms with even k vanish. In addition the middle term \(k = 3\) vanishes too. Finally

$$\begin{aligned} \boxed { (\gamma ^{\underline{1}}) ^{\alpha _1}_{\,\,\alpha _2} (\gamma _{\underline{1}})_{\alpha _3 \alpha _4} = - (\gamma ^{\underline{1}})^{\alpha _1}_{\,\,\ \alpha _4} (\gamma _{\underline{1}})_{ \alpha _3 \alpha _2} \quad \quad \text {projected by } (\gamma _{\pm })^{\alpha _2}_{\,\,\, \alpha _2'} (\gamma _{\pm })^{\alpha _4}_{\,\,\, \alpha _4'} } \end{aligned}$$
(4.51)

A frequently used form of the above identity involves cylic permutation of three \(+\)-chiral spinor doublets \(\varepsilon ^i, \kappa ^i, \lambda ^i\). Taking the sum of

$$\begin{aligned} \begin{aligned} (\varepsilon ^j \gamma _{m} \kappa _j) \gamma ^m \lambda ^i = - (\varepsilon ^j \gamma _m \lambda ^i) \gamma ^m \kappa _j \\ (\lambda ^j \gamma _m \kappa _j) \gamma ^m \varepsilon ^i = - (\lambda ^j \gamma _{m} \varepsilon ^i) \gamma ^m \kappa _j \end{aligned} \end{aligned}$$
(4.52)

we find

$$\begin{aligned} \boxed { (\varepsilon \gamma _{m} \kappa ) \gamma ^m \lambda + (\lambda \gamma _m \kappa ) \gamma ^m \varepsilon + (\varepsilon \gamma _m \lambda ) \gamma ^m \kappa = 0} \end{aligned}$$
(4.53)

Now we consider projection of 6d Fierz identity at \(p=1\) on spinors of opposite chirality. Take \(+\)-chiral doublet \(\varepsilon ^i\) and \(-\)-chiral doublet \(\eta ^i\). We find

$$\begin{aligned} \begin{aligned}&({\varepsilon ^{j}} \gamma ^{\underline{1}} \varepsilon _j) \gamma _{\underline{1}} \eta ^i = \tfrac{3}{2} ({\varepsilon ^{j}} \eta ^i) \varepsilon _j - \tfrac{1}{2} ({\varepsilon ^{j}} \gamma ^{\underline{2}} \eta ^i) \gamma _{\underline{2}} \varepsilon _j \\&({\varepsilon ^{j}} \gamma ^{\underline{2}} \eta ^i) \gamma _{\underline{2}} \varepsilon _j = -\tfrac{5}{4} ({\varepsilon ^{j}} \gamma ^{\underline{1}} \varepsilon _j) \gamma _{\underline{1}} \eta ^i \end{aligned} \end{aligned}$$
(4.54)

where at \(l=2\) the explicit coefficients in (4.41) are given as follows:

k

0

1

2

3

4

5

6

\(\tilde{\Delta }(6,2,k)\)

\( -\tfrac{15}{8} \)

\(-\tfrac{5}{8}\)

\(-\tfrac{1}{8}\)

\(-\tfrac{3}{8}\)

\( +\tfrac{1}{8} \)

\(-\tfrac{5}{8}\)

\(+\tfrac{15}{8}^{}\)

Hence, from the Eq. (4.54) we find another useful 6d Fierz identity

$$\begin{aligned} \boxed { ({\varepsilon ^{j}} \gamma ^{m} \varepsilon _j) \gamma _m \eta ^i = 4 ({\varepsilon ^{j}} \eta ^i) \varepsilon _j, \qquad (\varepsilon = \gamma _{+} \varepsilon , \quad \eta = \gamma _{-} \eta )} \end{aligned}$$
(4.55)

1.6 6d (0, 1) Theory Conventions

The spinor \(\varepsilon \) is \(+\)-chiral, the spinor \(\eta \) is \(-\)-chiral

$$\begin{aligned}&\varepsilon = \gamma _* \varepsilon = \gamma _{+} \varepsilon , \qquad&\eta = - \gamma _{*}\eta = \gamma _{-} \eta \end{aligned}$$
(4.56)

The tensor field \(T_{\mu \nu a}\) is 6d anti-self-dual, \(*_{6d} T = -T\). Useful contraction identities

(4.57)
(4.58)
(4.59)

The Bianchi identity on the field strength

$$\begin{aligned} \begin{aligned}&D_{m} F_{pq} + D_{q} F_{mp} + D_{p} F_{qm} = 0, \qquad \gamma ^{mpq} D_{m} F_{pq} = 0 \end{aligned} \end{aligned}$$
(4.60)

Positive chirality of \(\varepsilon \equiv \varepsilon ^{+}\) and negative chirality of \(T \equiv T^{-}\) implies

(4.61)

The spin-connection and the metric curvatures

$$\begin{aligned} \begin{aligned}&D_{\mu } v^{\hat{\rho }} = \partial _\mu v^{\hat{\rho }} + \omega ^{\hat{\rho }}{}_{\hat{\sigma }\mu } v^{\hat{\sigma }} \\&R^{\hat{\rho }}{}_{\hat{\sigma }\mu \nu } = [D_{\mu }, D_{\nu }]^{\hat{\rho }}_{\hat{\sigma }}, \qquad R_{\sigma \nu } = R^{\mu }{}_{\sigma \mu \nu }, \qquad R = R^{\mu }{}_{\mu } \end{aligned} \end{aligned}$$
(4.62)

The covariant derivative on spinors, the curvature and the Lichnerowicz formula

(4.63)

where \( (V^{\mathrm {R}}_\mu )^{i}{}_{j} \) is the \({\textit{SU(2)}}_{\mathrm {R}}\)-connection.

1.7 Supersymmetry Equations

The divergence of the first equation in the system (2.1) implies

(4.64)

which together with Lichnerowicz formula (4.63) produces

(4.65)

and the linear combination with the second equation in (2.1) produces

(4.66)

1.8 The 6d and 4d Spinor Conventions

As in (4.29) we take

$$\begin{aligned} \begin{aligned} \gamma _\mu ^{(6)} = \left( {\begin{matrix} \gamma _\mu ^{(4)} &{} 0 \\ 0 &{} - \gamma _{\mu }^{(4)} \end{matrix}}\right) ,\quad \gamma _5^{(6)} = \left( {\begin{matrix} 0 &{} 1 \\ 1 &{} 0 \end{matrix}}\right) ,\quad \gamma _6^{(6)} = \left( {\begin{matrix} 0 &{}-i \\ i &{} 0 \end{matrix}}\right) \\ \quad C^{(6)} = \left( {\begin{matrix} 0 &{} - c^{(4)}\gamma _{*}^{(4)} \\ - c^{(4)} \gamma _{*}^{(4)} &{} 0 \end{matrix}}\right) ,\quad \varepsilon ^{(6)}_{+} = \left( {\begin{matrix} \varepsilon ^{(4)}_{+} \\ \varepsilon ^{(4)}_{-} \end{matrix}}\right) ,\quad \eta ^{(6)}_{-} = \left( {\begin{matrix} \eta ^{(4)}_{-} \\ - \eta ^{(4)}_{+} \end{matrix}}\right) \end{aligned} \end{aligned}$$
(4.67)

where \(\varepsilon _{\pm }^{(4)}\) denote the \(\pm \)-chiral spinors of the 4d Clifford algebra with respect to \(\gamma _{*}^{(4)}\), the \(C^{(6)}\) is the bilinear form for the 6d Clifford algebra of type \((-{}-++)\), and \(c^{(4)}\) is the bilinear form of the 4d Clifford algebra of type \((-{}-++)\). In these conventions the bilinears computed in 4d and 6d notations agree:

$$\begin{aligned} \begin{aligned} \varepsilon _{+}^{(6)} C^{(6)} \eta _{-}^{(6)}= \varepsilon _{+}^{(4)} c^{(4)} \eta _{+}^{(4)} + \varepsilon _{-}^{(4)} c^{(4)} \eta _{-}^{(4)}\\ \varepsilon _{+}^{(6)} C^{(6)} \gamma _{\mu }^{(6)} \tilde{\varepsilon }_{+}^{(6)}= \varepsilon _{+}^{(4)} c^{(4)} \gamma _{\mu }^{(4)} \tilde{\varepsilon }_{-}^{(4)} + \varepsilon _{-}^{(4)} c^{(4)} \gamma _{\mu }^{(4)}\tilde{\varepsilon }_{+}^{(4)} \end{aligned} \end{aligned}$$
(4.68)

For the explicit form of spinors we use 4d gamma-matrices, the 4d chirality operator and 4d bilinear form in terms of (4.30)

$$\begin{aligned} \begin{aligned}&(\gamma _i, \gamma _4) = (\sigma _2 \otimes \sigma _i, \sigma _1 \otimes \sigma _0), \\&\gamma _{*}^{(4)} = -\gamma _1 \dots \gamma _4 = -\sigma _3 \otimes \sigma _0\\&c^{(4)} = -i \sigma _0 \otimes \sigma _2 \\ \end{aligned} \end{aligned}$$
(4.69)

We decompose

$$\begin{aligned} T_{\mu \nu a} \gamma ^{a} = T_{\mu \nu -} \gamma ^{-} + T_{\mu \nu +} \gamma ^{+} \end{aligned}$$
(4.70)

in terms of

$$\begin{aligned} \begin{aligned}&T_{\mu \nu -} = (T_{\mu \nu 5} - i T_{\mu \nu 6}) \qquad \gamma ^{-} =\tfrac{1}{2} (\gamma ^5 + i \gamma ^6) \qquad \gamma ^- \gamma ^{56}_* = - \gamma ^{-} \\&T_{\mu \nu +} = (T_{\mu \nu 5} + i T_{\mu \nu 6}) \qquad \gamma ^{+} = \tfrac{1}{2} (\gamma ^5 - i \gamma ^6) \qquad \gamma ^+ \gamma ^{56}_* = + \gamma _{+} \\ \end{aligned} \end{aligned}$$
(4.71)

with \(\gamma ^{56}_* = - i \gamma _{56}\). Since \(T_{\mu \nu a}\) is of negative 6d chirality, the \(T_{\mu \nu \pm }\) has \(\mp \) 4d chirality. We define

$$\begin{aligned} T_{\mu \nu }^{(4)} \equiv T_{\mu \nu +} - T_{\mu \nu -} = 2 \mathrm {i}T_{\mu \nu 6} \end{aligned}$$
(4.72)

In terms of the 4d spinors the generalized conformal Killing equation (2.1) takes form

$$\begin{aligned} D_{\mu } \varepsilon - \tfrac{1}{16} T^{(4)}_{\rho \sigma } \gamma ^{\rho \sigma } \gamma _\mu \varepsilon = \gamma _\mu \eta \end{aligned}$$
(4.73)

Other 6d-4d notational definitions are

$$\begin{aligned} \begin{aligned} \Phi ^{\pm }&= \tfrac{1}{2} (\Phi ^{5} \mp i \Phi ^{6}),&\quad \Phi _{\pm }&= (\Phi ^{5} \pm i \Phi ^{6})\\ T_{\mu \nu a} \gamma ^{\mu \nu } \Phi ^{a} \varepsilon _{+}^{(6)}&= T_{\mu \nu }^{(4)} \gamma ^{\mu \nu } (\Phi ^{+} \varepsilon _{-}^{(4)} - \Phi ^{-} \varepsilon _{+}^{(4)}), \quad&\Phi ^a \gamma _a \eta&= 2 \Phi ^{-} \eta _{-}^{(4)} - 2 \Phi ^{+} \eta _{+}^{(4)}\\ \end{aligned} \end{aligned}$$
(4.74)

Appendix 2: Supersymmetry Algebra

1.1 The Off-Shell Closure of the Supersymmetry on the Vector Multiplet

Here we explicitly compute \(\delta ^2\) on vector multiplet for \(\delta \) defined by:

(4.75)

provided that spinors \((\varepsilon , \eta )\) with satisfy generalized conformal Killing equations (2.3).

We find a contribution of several terms in \(\delta _{}^2 \lambda ^i\). In the flat space we drop the terms proportional to \(D_{\mu } \varepsilon \), \(\eta \) and T and find

$$\begin{aligned} \delta _{\text {flat}}^2 \lambda ^i = \delta ( - \tfrac{1}{4} F_{mn} \gamma ^{mn} \varepsilon ^i) + \delta (Y^{i}_{\,\,\, j} \varepsilon ^{j}) \end{aligned}$$
(4.76)

with

(4.77)

and together with the \(\delta ( Y^{i}_{\,\,\, j} \varepsilon ^{j}) \) we find

(4.78)

Next we account for \(D_{\mu } \varepsilon \) and \(\eta \) terms, still keeping \(T=0\). The transformation would be complete on conformally flat space. The \(\delta ^2_{\text {cflat}} \lambda \) acquires new contributions

$$\begin{aligned} \delta ^2_{\text {cflat}} \lambda ^i = \delta ^2_{\text {flat}} \lambda ^i + \mathbf {term_c} \end{aligned}$$
(4.79)

where

$$\begin{aligned} \begin{aligned}&\mathbf {term_c} = - \tfrac{1}{4} ({\lambda } \gamma _q \gamma _\mu \eta ) \gamma ^{\mu q} \varepsilon ^i + \tfrac{1}{2} ({\lambda }\gamma _a \varepsilon ) \gamma ^a \eta ^i \mathop {=}\limits ^{ (4.53)\,\mathrm {on}\,\,\gamma _q{}\gamma ^q} \\&\qquad = -\tfrac{1}{2} ({\varepsilon } \gamma _q \lambda ) \gamma ^q \eta + \tfrac{1}{4} ({\eta } \gamma _{\mu q} \varepsilon ) \gamma ^{\mu q} \lambda + ({\eta } \varepsilon ) \lambda + ({\eta }\lambda ) \varepsilon \end{aligned} \end{aligned}$$
(4.80)

Then we expand the middle term in 4d indices

$$\begin{aligned} \tfrac{1}{4} ({\eta } \gamma _{\mu q} \varepsilon ) \gamma ^{\mu q} \lambda = + \tfrac{1}{8} ({\eta } \gamma _{\mu \nu } \varepsilon ) \gamma ^{\mu \nu } \lambda + \tfrac{1}{8} ({\eta } \gamma _{p q} \varepsilon ) \gamma ^{p q} \lambda - \tfrac{1}{8} ({\eta } \gamma _{ab} \varepsilon ) \gamma ^{ab} \lambda \end{aligned}$$
(4.81)

and apply Fierz identity (4.38) to the first and the last term in (4.80) to find

$$\begin{aligned} \begin{aligned} -\tfrac{1}{2} ({\varepsilon }^j \gamma _q \lambda _j) \gamma ^q \eta ^i&= - \tfrac{3}{4} ({\varepsilon }^j \eta ^i) \lambda _j + \tfrac{1}{8} ({\varepsilon }^j \gamma _{pq} \eta ^{j}) \gamma ^{pq} \lambda _j \\ ({\eta }^j \lambda _j) \varepsilon ^i&= \tfrac{1}{4} ({\eta }^{j} \varepsilon ^{i}) \lambda _j - \tfrac{1}{8} ({\eta }^{j} \gamma _{pq} \varepsilon ^{i}) \gamma ^{pq} \lambda _j \end{aligned} \end{aligned}$$
(4.82)

All \(\gamma _{pq} \gamma ^{pq}\) terms are cancelled using (4.49) and the scalar terms are simplified as

$$\begin{aligned} ({\eta } \varepsilon ) \lambda - \tfrac{3}{4} ({\varepsilon }^j \eta ^i) \lambda _j+ \tfrac{1}{4} ({\eta }^{j} \varepsilon ^{i}) \lambda _j = \tfrac{3}{ 4} ({\eta } \varepsilon ) \lambda + ({\eta }^{(i} \varepsilon ^{j)}) \lambda _j \end{aligned}$$
(4.83)

and the contribution from the non-flat but conformally flat terms is

$$\begin{aligned} \mathbf {term_c} = + \tfrac{1}{8} ({\eta } \gamma _{\mu \nu } \varepsilon ) \gamma ^{\mu \nu } \lambda - \tfrac{1}{8} ({\eta } \gamma _{ab} \varepsilon ) \gamma ^{ab} \lambda + \tfrac{3}{ 4} ({\eta } \varepsilon ) \lambda + ({\eta }^{(i} \varepsilon ^{j)}) \lambda _j \end{aligned}$$
(4.84)

Then we compute the T-terms in

$$\begin{aligned} \delta ^2 \lambda ^i = \delta ^2_{\text {cflat}} \lambda ^i + \mathbf {term_T} \end{aligned}$$
(4.85)

and find

(4.86)

The \(\mathbf {term_T}\) can be combined with the \(\mathbf {term_c}\):

$$\begin{aligned} \tfrac{1}{8} (\eta \gamma _{\mu \nu } \varepsilon ) \gamma ^{\mu \nu } \lambda + \tfrac{1}{32} T_{\mu \nu a} ({\varepsilon } \gamma ^a \varepsilon ) \gamma ^{\mu \nu } \lambda = \tfrac{1}{16} D_{\mu } (\varepsilon \gamma _\nu \varepsilon ) \gamma ^{\mu \nu } \lambda \end{aligned}$$
(4.87)

so that finally

$$\begin{aligned} \delta _{\varepsilon ,\eta }^2 \lambda ^i = \tfrac{1}{4} ({\varepsilon }\gamma ^m \varepsilon ) D_m \lambda ^i + \tfrac{1}{16} D_{\mu } (\varepsilon \gamma _\nu \varepsilon ) \gamma ^{\mu \nu } \lambda ^i - \tfrac{1}{8} ({\eta } \gamma _{ab} \varepsilon ) \gamma ^{ab} \lambda ^i + \tfrac{3}{ 4} ({\eta } \varepsilon ) \lambda ^i + ({\eta }^{(i} \varepsilon ^{j)}) \lambda _j \end{aligned}$$
(4.88)

The variation \(\delta ^2_{\varepsilon , \eta } Y^{ij}\) and \(\delta ^2_{\varepsilon ,\eta } A_m\) are computed similarly.

1.2 The Invariance of the Lagrangian

The 4d \(\mathcal {N}=2\) supersymmetric Lagrangian for vector multiplet in curved background for vanishing fermionic fields of Weyl multiplet is proportional to (2.11)

$$\begin{aligned} \tfrac{1}{2} F_{mn} F^{mn} + {\lambda }^i \gamma ^m D_{m} \lambda _i&+ (\tfrac{1}{6}R + M) \Phi _a \Phi ^a - 2 Y_{ij} Y^{ij} -F^{\mu \nu } T_{\mu \nu a} \Phi ^a \nonumber \\ {}&+ \tfrac{1}{4} T_{\mu \nu a} T^{\mu \nu b} \Phi ^a \Phi _b \end{aligned}$$
(4.89)

The trace is implicitly implied in all terms. To check the invariance under (2.8) we first consider the flat background with \(D_{\mu } \varepsilon = 0, \eta = 0, T=0, M =0\). After that we will add the variational terms in conformally flat background, and finally we will add the remaining T-terms. We find modulo total derivative

(4.90)

that all terms add to zero. In conformally flat background the new terms appear in the variation of fermionic kinetic term and the coupling of scalars to the curvature

$$\begin{aligned} \begin{aligned}&\delta _{\text {cflat}} ((\tfrac{1}{6} R+M) \Phi _a \Phi ^a) = (\tfrac{1}{6}R + M) ({\lambda } \gamma ^a \Phi _a \varepsilon ) \\&\delta _{\text {cflat}} ( {\lambda } \gamma ^m D_m \lambda ) = \delta _{\text {flat}} ( {\lambda } \gamma ^m D_m \lambda ) + \mathbf {term_c} \end{aligned} \end{aligned}$$
(4.91)

where

(4.92)

so all terms in (4.91) cancel when added together.

Next we consider the remaining T-terms for a generic background. We set

$$\begin{aligned} \mathcal { L} = \mathcal {L}_{\text {cflat}} + \mathcal {L}_{T} \end{aligned}$$
(4.93)

where

$$\begin{aligned} \mathcal {L}_{T} = -F^{\mu \nu } T_{\mu \nu a} \Phi ^a + \tfrac{1}{4} T_{\mu \nu a} T^{\mu \nu b} \Phi ^a \Phi _b \end{aligned}$$
(4.94)

and we find

(4.95)

In the variation of the fermionic action the new terms are

$$\begin{aligned} \delta ( {\lambda } \gamma ^m D_m \lambda ) = \delta _{\text {cflat}} ( {\lambda } \gamma ^m D_m \lambda ) + \mathbf {term_{T1}} + \mathbf { term_{T2}} \end{aligned}$$
(4.96)

where \(\mathbf {term_{T1}}\) comes from T-terms in generalized conformal Killing equation (2.3) and \(\mathbf {term_{T2}}\) comes from the T-term in the variation \(\delta _{\varepsilon , \eta } \lambda \) (2.8)

(4.97)

Then we find

(4.98)

and

(4.99)

Using (4.61) all TF terms cancel between (4.99) and (4.95) and finally the \([DT]\Phi \) terms in (4.95), (4.97), (4.99) cancel as well as

$$\begin{aligned} \begin{aligned}&(4.95): \qquad (\lambda \gamma ^{\nu } \varepsilon ) [D^{\mu } T_{\mu \nu a}] \Phi ^a \\&(4.97): \qquad \tfrac{1}{2} (D^{\mu } T_{\mu \nu a} ) \Phi _b ({\lambda } \gamma ^{b} \gamma ^{\nu a} \varepsilon ) = - \tfrac{1}{2} ({\lambda } \gamma ^{\nu } \varepsilon ) D^{\mu } T_{\mu \nu a} \Phi ^a + \tfrac{1}{2} ({\lambda } \gamma ^{\nu ab} \varepsilon ) \Phi ^b D^{\mu } T_{\mu \nu a} \\&(4.99): \qquad -\tfrac{1}{4} {\lambda } D_{\rho } (T_{\mu \nu a}) \Phi ^a \gamma ^{\rho } \gamma ^{\mu \nu } \varepsilon = - \tfrac{1}{2} ({\lambda } \gamma ^{\mu } \varepsilon ) D^{\mu } T_{\mu \nu a} \Phi ^a - \tfrac{1}{4} ({\lambda } \gamma ^{\mu \nu \rho } \varepsilon ) \Phi ^a D_{\rho } T_{\mu \nu a} \end{aligned} \end{aligned}$$
(4.100)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pestun, V. (2016). Localization for \(\mathcal {N}=2\) Supersymmetric Gauge Theories in Four Dimensions. In: Teschner, J. (eds) New Dualities of Supersymmetric Gauge Theories. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-18769-3_6

Download citation

Publish with us

Policies and ethics