Skip to main content

Endovascular Perforation Murine Model of Subarachnoid Hemorrhage

  • Chapter
Brain Edema XVI

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 121))

Abstract

Subarachnoid hemorrhage (SAH) is a subtype of stroke with disastrous outcomes of high disability and mortality. A variety of endeavors have been developed to explore a SAH animal model for investigation of the disease. Among these models, the endovascular perforation SAH model was considered to be the most simulative to the clinical human SAH because it reproduces several pathophysiology procedures and presents some of the most important post-hemorrhage features. An applicable SAH animal model should have the characteristics of low mortality rate, limited surgical manipulation, and adaptation to many species, which permits reproducibility and standardization. An intensive discussion of how to improve the techniques and refine the procedure has taken place in the last decade. This report describes our experiences with a murine model of SAH. We aim to standardize and optimize the procedures to establish a relatively stable animal model for SAH research.

$Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arras M, Autenried P, Rettich A, Spaeni D, Rulicke T (2001) Optimization of intraperitoneal injection anesthesia in mice: drugs, dosages, adverse effects, and anesthesia depth. Comp Med 51:443–456

    CAS  PubMed  Google Scholar 

  2. Bassel Zebian GC (2012) Spontaneous intracranial haemorrhage. Surgery (Oxford) 30:136–141

    Article  Google Scholar 

  3. Buhler D, Schuller K, Plesnila N (2014) Protocol for the induction of subarachnoid hemorrhage in mice by perforation of the circle of Willis with an endovascular filament. Transl Stroke Res 5(6):653–659

    Article  PubMed Central  PubMed  Google Scholar 

  4. Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835:18–26

    Article  CAS  PubMed  Google Scholar 

  5. Dietrich HH, Dacey RG Jr (2000) Molecular keys to the problems of cerebral vasospasm. Neurosurgery 46:517–530

    Article  CAS  PubMed  Google Scholar 

  6. Feiler S, Friedrich B, Scholler K, Thal SC, Plesnila N (2010) Standardized induction of subarachnoid hemorrhage in mice by intracranial pressure monitoring. J Neurosci Methods 190:164–170

    Article  PubMed  Google Scholar 

  7. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–634; discussion 635

    Article  CAS  PubMed  Google Scholar 

  8. Gargiulo S, Greco A, Gramanzini M, Esposito S, Affuso A, Brunetti A, Vesce G (2012) Mice anesthesia, analgesia, and care, Part I: anesthetic considerations in preclinical research. ILAR J 53:E55–E69

    Article  PubMed  Google Scholar 

  9. Hamers FP, Lankhorst AJ, van Laar TJ, Veldhuis WB, Gispen WH (2001) Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. J Neurotrauma 18:187–201

    Article  CAS  PubMed  Google Scholar 

  10. Hanafy KA (2013) The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation 10:83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kamii H, Kato I, Kinouchi H, Chan PH, Epstein CJ, Akabane A, Okamoto H, Yoshimoto T (1999) Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase. Stroke 30:867–871; discussion 872

    Article  CAS  PubMed  Google Scholar 

  12. Kooijman E, Nijboer CH, van Velthoven CT, Kavelaars A, Kesecioglu J, Heijnen CJ (2014) The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation 11:2

    Article  PubMed Central  PubMed  Google Scholar 

  13. Marder CP (2014) Subarachnoid hemorrhage: beyond aneurysms. AJR Am J Roentgenol 202:25–37

    Article  PubMed  Google Scholar 

  14. Park IS, Meno JR, Witt CE, Suttle TK, Chowdhary A, Nguyen TS, Ngai AC, Britz GW (2008) Subarachnoid hemorrhage model in the rat: modification of the endovascular filament model. J Neurosci Methods 172:195–200

    Article  PubMed  Google Scholar 

  15. Parra A, McGirt MJ, Sheng H, Laskowitz DT, Pearlstein RD, Warner DS (2002) Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res 24:510–516

    Article  PubMed  Google Scholar 

  16. Rowland MJ, Hadjipavlou G, Kelly M, Westbrook J, Pattinson KT (2012) Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth 109:315–329

    Article  CAS  PubMed  Google Scholar 

  17. Schüller K, Bühler D, Plesnila N (2013) A murine model of subarachnoid hemorrhage. J Vis Ex (81):e50845

    Google Scholar 

  18. Schwartz AY, Masago A, Sehba FA, Bederson JB (2000) Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model. J Neurosci Methods 96:161–167

    Article  CAS  PubMed  Google Scholar 

  19. Sehba FA, Pluta RM (2013) Aneurysmal subarachnoid hemorrhage models: do they need a fix? Stroke Res Treat 2013:615154

    PubMed Central  PubMed  Google Scholar 

  20. Sehba FA, Pluta RM, Zhang JH (2011) Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol 43:27–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S, Zhang JH (2009) Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke 40:2519–2525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a direct grant from the Chinese University of Hong Kong (Reference no. 2013.1.105).

Conflict of Interest Statement

All authors read and approved the final manuscript. The authors declare that they have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwok Chu George Wong MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Du, G.J., Lu, G., Zheng, Z.Y., Poon, W.S., Wong, K.C.G. (2016). Endovascular Perforation Murine Model of Subarachnoid Hemorrhage. In: Applegate, R., Chen, G., Feng, H., Zhang, J. (eds) Brain Edema XVI. Acta Neurochirurgica Supplement, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-18497-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18497-5_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18496-8

  • Online ISBN: 978-3-319-18497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics