Skip to main content

Advances in Molecular Design of Polymer Surfaces with Antimicrobial, Anticoagulant, and Antifouling Properties

  • Chapter
  • First Online:
Biomaterials in Regenerative Medicine and the Immune System

Abstract

Inertness, mechanical strength, or biocompatibility are those attributes that allow many polymeric materials to be successfully integrated into biological systems or utilized in biomedical devices, but not without adverse effects. One of the ongoing problems is the formation of microbial films that are often detrimental and deadly. This chapter discusses potential surface modifications of polymeric materials utilized in biomedical applications that inhibit bacterial growth. While recent studies reveal a number of short-term approaches, covalent attachment of multilayers (CAM) to tether pH-responsive “switching” polyelectrolytes is a long-term alternative. Synthetic paths to covalently attach bacteriophages (phages) to synthetic polymeric surfaces while maintaining bacteriophage’s biological activities capable of killing deadly human pathogens are also explored. This alternative approach of fighting microbial wars on polymeric surfaces may be considered as a long-term alternative to inhibit early stages of microbial film formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauer S, Schmuki P, von der Mark K, Park J. Engineering biocompatible implant surfaces; part I: materials and surfaces. Prog Mater Sci. 2013;58:261.

    Article  Google Scholar 

  2. Temenoff JS, Mikos AG. Biomaterials: the intersection of biology and materials science. Upper Saddle River: Pearson/Prentice Hall; 2008.

    Google Scholar 

  3. Wintermantel E, Suk-Woo H. Medizintechnik mit biokompatiblen Werkstoffen und Verfahren. Berlin: Springer; 2002.

    Google Scholar 

  4. Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32:698.

    Article  Google Scholar 

  5. Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32:876.

    Article  Google Scholar 

  6. Shen H, Hu X, Bei J, Wang S. The immobilization of basic fibroblast growth factor on plasma-treated poly(lacitide-co-glycolide). Biomaterials. 2008;29:2388.

    Article  Google Scholar 

  7. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487.

    Article  Google Scholar 

  8. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101:1869.

    Article  Google Scholar 

  9. Jiang T, Chang J, Wang C, Ding Z, Chen J, Zhang J, Kang E-T. Adsoprtion of plasmid DNA onto N, N′-(dimethylamino)ethyl-methacrylate graft-polymerized poly-L-lactic acid folm surface for promotion of in-situ gene delivery. Biomacromolecules. 2007;8:1951.

    Article  Google Scholar 

  10. Mano JF. Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater. 2008;10:515.

    Article  Google Scholar 

  11. Zeilikin AN. Drug releasing polymer thin films: new era of surface-mediated drug delivery. ACS Nano. 2010;4:2494.

    Article  Google Scholar 

  12. Guavin R, Khademhosseini A, Guillemette M, Langer R. Emerging trends in tissue engineering. Compr Biotechnol. 2011;5:251.

    Article  Google Scholar 

  13. Davis JR. Handbook of materials for medical devices. Materials Park: ASM International; 2003.

    Google Scholar 

  14. Yu M, Urban MW. Polymeric surfaces with anticoagulant, antifouling, and antimicrobial attributes. Macromol Symp. 2009;283:311.

    Article  Google Scholar 

  15. Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci. 2010;35:3.

    Article  Google Scholar 

  16. Urban MW. Stimuli-responsive colloids; from stratified to self-repairing polymeric films. Curr Opin Colloid Interface Sci. 2014;19:66–75.

    Article  Google Scholar 

  17. Yang Y, Urban MW. Self-healing polymeric materials. Chem Soc Rev. 2013;42(17):7446–67.

    Article  Google Scholar 

  18. Bae W-S, Urban MW. Creating patterned poly(dimethylsiloxane) surfaces with amoxicillin and poly(ethylene glycol). Langmuir. 2006;22:10277.

    Article  Google Scholar 

  19. Aumsuwan N, Heinhorst S, Urban MW. Antibacterial surfaces on expanded poly(tetrafluoroethylene); penicillin attachment. Biomacromolecules. 2007;8:713.

    Article  Google Scholar 

  20. Kroschwitz JI. Polymers: biomaterials and medical applications. New York: Wiley; 1989.

    Google Scholar 

  21. Kenawy ER, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8:1359.

    Article  Google Scholar 

  22. Kidane AG, Salacinski H, Tiwari A, Bruckdorfer KR, Seifalian AM. Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineering surfaces. Biomacromolecules. 2004;5:798.

    Article  Google Scholar 

  23. Senaratne W, Andruzzi L, Ober CK. Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules. 2005;6:2427.

    Article  Google Scholar 

  24. Bae WS, Convertine AJ, McCormick CL, Urban MW. Effect of sequential layer-by-layer surface modifications on the surface energy of plasma-modified poly(dimethylsiloxane). Langmuir. 2007;23:667.

    Article  Google Scholar 

  25. Kim H, Urban MW. Reactions of thrombresistant multilayered thin films on poly(vinyl chloride) (PVC) surface: a spectroscopic study. Langmuir. 1998;14:7235.

    Article  Google Scholar 

  26. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003;21:1171.

    Article  Google Scholar 

  27. Tanii T, Hosaka T, Miyake T, Kanari Y, Zhang G-J, Funatsu T, Ohdomari I. Hybridization of deoxyribonucleic acid and immobilization of green fluorescent protein on nanostructured organosilane templates. Jpn J Appl Phys. 2005;44:5851.

    Article  Google Scholar 

  28. Roy D, Knapp JS, Guthrie JT, Perrier S. Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules. 2008;9:91.

    Article  Google Scholar 

  29. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ. Permanent, nonleaching antibacterial surface.1. Synthesis by atom transfer radical polymerization. Biomacromolecules. 2004;5:877.

    Article  Google Scholar 

  30. Dvoracek CM, Sukhonosova G, Benedik MJ, Grunlan JC. Antimicrobial behavior of polyelectrolyte surfactant thin film assemblies. Langmuir. 2009;25:10322.

    Article  Google Scholar 

  31. Lichter JA, Vliet KJV, Rubner MF. Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules. 2009;42:8573.

    Article  Google Scholar 

  32. Chen W, McCarthy TJ. Layer-by-Layer deposition: a tool for polymer surface modification. Macromolecules. 1997;30:78.

    Article  Google Scholar 

  33. Black FE, Hartshorne M, Davies MC, Roberts CJ, Tendler SJB, Williams PM, Shakesheff KM. Surface engineering and surface analysis of a biodegradable polymer with biotinylated end groups. Langmuir. 1999;15:3157.

    Article  Google Scholar 

  34. Duwez A-S, Cuenot S, Jérôme C, Gabriel S, Jérôme R, Rapino S, Zerbetto F. Mechanochemistry: targted delivery of single molecules. Nat Nanotechnol. 2006;1:122.

    Article  Google Scholar 

  35. Onard S, Martin I, Chailan J-F, Crespy A, Carriere P. Nanostructuration in thin epoxy-amine films inducing controlled specific phase ethericfication: effect on the glass transition temperatures. Macromolecules. 2011;44:3485.

    Article  Google Scholar 

  36. Desmet T, Morent R, Geyter ND, Leys C, Schacht E, Dubruel P. Nonthermal plasma technology as a varsatilestrategy for polymeric biomaterials surface modification: a review. Biomacromolecules. 2009;10:2351.

    Article  Google Scholar 

  37. Suituma C, Wang Y, Hupert M, Barany F, McCarley RL, Soper SA. Fabrication of DNA microarrays onto poly(methyl methacrylate) with ultravilet petterning and microfluidics for the detection of low-abundant point mutations. Anal Biochem. 2005;340:123.

    Article  Google Scholar 

  38. Ma Q, Zhang H, Zhao J, Gong Y-K. Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique. Appl Surf Sci. 2012;258:9711.

    Article  Google Scholar 

  39. Tugulu S, Klok HA. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Biomacromolecules. 2008;9:906.

    Article  Google Scholar 

  40. Rasmussen JR, Stedronsky ER, Whitesides GM. Introduction, modification, and characterization of functional-groups on surface of low-density polyethylene film. J Am Chem Soc. 1977;99:4736.

    Article  Google Scholar 

  41. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40:2004.

    Article  Google Scholar 

  42. Binder WH, Sachsenhofer R. ‘Click’ chemistry in polymer and materials science. Macromol Rapid Commun. 2007;28:15.

    Article  Google Scholar 

  43. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed. 2002;41:2596.

    Article  Google Scholar 

  44. Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ, Hawker CJ. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev. 2009;109:5620.

    Article  Google Scholar 

  45. Vahdata A, Bahramia H, Ansaria N, Ziaieb F. Radiation grafting of styrene onto polypropylene fibres by a 10 MeV electron beam. Radiat Phys Chem. 2007;76:787.

    Article  Google Scholar 

  46. Yasuda H. Plasma polymerization. Orlando: Academic Press; 1985.

    Google Scholar 

  47. Gaboury SR, Urban MW. Microwave plasma reactions of solid monomers with silicone elastomer surfaces: a spectroscopic study. Langmuir. 1993;9:3225.

    Article  Google Scholar 

  48. Bae WS, Urban MW. Reactions of antimicrobial species to imidazole-microwave plasma reacted poly(dimethylsiloxane) surfaces. Langmuir. 2004;20:8372.

    Article  Google Scholar 

  49. Chevallier P, Janvier R, Mantovani D, Laroche G. In vitro biological performances of phosphorylcholine-grafted ePTFE prostheses through RFGD plasma techniques. Macromol Biosci. 2005;5:829.

    Article  Google Scholar 

  50. Zhang Q, Wang C, Babukutty Y, Ohyama T, Kogoma M, Kodama M. Biocompatibility evaluation of ePTFE membrane modified with PEG in atmospheric ppressure glow discharge. J Biomed Mater Res. 2002;60:502.

    Article  Google Scholar 

  51. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol. 2005;39:1378.

    Article  Google Scholar 

  52. Munoz-Bonilla A, Fernandez-Garcia M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37:281.

    Article  Google Scholar 

  53. Rabea EL, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applicatiopns and mode of action. Biomacromolecules. 2003;4:1457.

    Article  Google Scholar 

  54. Kazemzadeh-Narbat M, Kindrachuk J, Duan K, Jenssen H, Hancock REW, Wang R. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials. 2010;31:9519.

    Article  Google Scholar 

  55. Grunlan JC, Choi JK, Lin A. Antimicrobial behavior of polyelectrolyte multilayerfilms containing cetrimide and silver. Biomacromolecules. 2005;6:1149.

    Article  Google Scholar 

  56. Markoishvili K, Tsitlanadze G, Katsarava R, Morris JGJ, Sulakvalidze A. A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promice in management in infected venous stasis ulcers and other poorlt healing woulds. Int J Dermatol. 2002;41:453.

    Article  Google Scholar 

  57. Schierholz JM, Beuth J, Pulverer G, König D-P, Scharlack RS, Kampf G, Dietze B, Wendt C, Martiny H, Große-Siestrup C. Silver-containing polymers antimicrob. Agents Chemother. 1999;43:2819.

    Google Scholar 

  58. Huang J, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules. 2007;8:1396.

    Article  Google Scholar 

  59. Aumsuwan N, Heinhorst S, Urban MW. The effectiveness of antibiotic activity of penicillin attahed to expanded poly(tetrafluoroethylene) (ePTFE) surfaces: a quantitative assessment. Biomacromolecules. 2007;8:3525.

    Article  Google Scholar 

  60. Aumsuwan N, Danyus RC, Heinhorst S, Urban MW. Attachment of amicillin to expanded poly(tetrafluoroethylene): surface reactions leading to inhibition of microbial growth. Biomacromolecules. 2008;9:1712.

    Article  Google Scholar 

  61. Tiller JC, Lee SB, Lewis K, Klibanov AM. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79:465.

    Article  Google Scholar 

  62. Larm O, Larsson R, Olsson P. A new non-thrombogenic surface prepared by selective covalent binding of heparin via modified reducing terminal residue. Biomater Med Devices Artif Organs. 1983;11:161.

    Google Scholar 

  63. Bourin M-C, Lindahl U. Review article: glycosaminoglycans and the regulation of blood coagulation. Biochem J. 1993;289:313.

    Article  Google Scholar 

  64. Phaneuf MD, Berceli SA, Bide MJ, Quist WC, Logerfo FW. Covalent linkage of recombinant hirudin to poly(ethylene terephthalate) (Dacron): creation of a novel antithrombin surface. Biomaterials. 1997;18:755.

    Article  Google Scholar 

  65. Seifert B, Romaniuk P, Groth T. Covalent immobilzation of hirudin improves the haemocompatibility of polylactide-polyglycolide in vitro. Biomaterials. 1997;18:1495.

    Article  Google Scholar 

  66. Rabenstein DL. Heparin and heparin sulfate: structure and function. Nat Prod Rep. 2002;19:312.

    Article  Google Scholar 

  67. Hirsh J, Shaughnessy SG, Halperin JL, Granger C, Ohman EM, Dalen JE. Heparin and low-molecular weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. CHEST. 2001;119:64S.

    Article  Google Scholar 

  68. Chandy T, Das GS, Wilson RF, Rao GHR. Use of plasma glow for surface-engineering biomolecules to enhance bloodcompatibility of Dacron and PTFE vascular prosthesis. Biomaterials. 2000;21:699.

    Article  Google Scholar 

  69. Christensen K, Larsson R, Emanuelsson H, Elgue G, Larsson A. Improved blood compatibility of a stent graft by combining heparin coating and abciximab. Thromb Res. 2005;115:245.

    Article  Google Scholar 

  70. Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of biactive compounds. Prog Polym Sci. 2007;32:698.

    Article  Google Scholar 

  71. Tanga Y, Singh J. Controlled delivery of aspirin: effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. Int J Pharm. 2008;357:119.

    Article  Google Scholar 

  72. Li F-M, Gu Z-W, Li G-W, WAang S, feng X-D. Synthesis of biocompatible polymers with asparin-moieties for asparin delivery. J Bioact Compat Polym. 1991;6:142.

    Article  Google Scholar 

  73. Aldenhoff YB, Koole LH. Platelet adhesion studies on dipyridamole coated polyurethane surfaces. Eur Cell Mater. 2003;5:61.

    Google Scholar 

  74. Krishnan S, Ayothi R, Hexemer A, Finlay JA, Sohn KE, Perry R, Ober CK, Kramer EJ, Callow ME, Callow JA, et al. Anti-biofouling properties of comblike block copolymers with amphiphilic side chains. Langmuir. 2006;22:5075.

    Article  Google Scholar 

  75. Chen H, Yuan L, Song W, Wu Z, Li D. Biocompatible polymer materials: role of protein-surface interactions. Prog Polym Sci. 2008;33:1059.

    Article  Google Scholar 

  76. Currie EPK, Norde W, Stuart MAC. Tethered polymer chains: surface chemistry and their impact on colloidal and suface properties. Adv Colloid Interface Sci. 2003;100:205.

    Article  Google Scholar 

  77. Ma HW, Hyun JH, Stiller P, Chilkoti A. Non-fouling oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater. 2004;16:338.

    Article  Google Scholar 

  78. Fan XW, Lin LJ, Messersmith PB. Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length. Biomacromolecules. 2006;7:2443.

    Article  Google Scholar 

  79. Wagner VE, Koberstein JT, Bryers JD. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers. Biomaterials. 2004;25:2247.

    Article  Google Scholar 

  80. Du H, Chandaroy P, Hui SW. Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim Biophys Acta. 1997;1326:236.

    Article  Google Scholar 

  81. Thomas J, Choi SB, Fjeldheim R, Boudjouk P. Silicones containing pendant biocides for antifouling coatings. Biofouling. 2004;20:227.

    Article  Google Scholar 

  82. Chen H, Brook MA, Sheardown H. Silicone elastomers for reduced protein adsorption. Biomaterials. 2004;25:2273.

    Article  Google Scholar 

  83. Goda T, Konno T, Takai M, Moro T, Ishihara K. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials. 2006;27:5151.

    Article  Google Scholar 

  84. Chen S, Zheng J, Li L, Jiang SY. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. J Am Chem Soc. 2005;127:14473.

    Article  Google Scholar 

  85. Kyomotoa M, Morob T, Saigaa K, Hashimotoe M, Itoc H, Kawaguchic H, Takatorib Y, Ishiharaa K. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials. Biomaterials. 2012;33:4451.

    Article  Google Scholar 

  86. Silva R, Muniz EC, Rubira AF. Multiple hydrophobic polymer ultra-thin layers covalently anchored to polyethylene films. Polymer. 2008;49:4066.

    Article  Google Scholar 

  87. Bae W-S, Urban MW. Reactions of antimicrobial species to imidazole-microwave plasma reacted poly(dimethylsiloxane) (PDMS) surfaces. Langmuir. 2004;20:8372.

    Article  Google Scholar 

  88. Hensarling RM, Doughty VA, Chan JW, Patton DL. “Clicking” polymer brushes with thiol-yne chemistry: indoors and out. J Am Chem Soc. 2009:131:14673.

    Article  Google Scholar 

  89. Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov Today. 2003;8:1128.

    Article  Google Scholar 

  90. Chan EWL, Yousaf MN. Immobilization of ligands with precise control of density to electroactive surfaces. J Am Chem Soc. 2006;128:15542.

    Article  Google Scholar 

  91. Zhu K, Zhang Y, He S, Chen W, Shen J, Wang Z, Jiang X. Quantification of proteins by functionalized gold nanoparticles using click chemistry. Anal Chem. 2012;84:4267.

    Article  Google Scholar 

  92. Qin G, Santos C, Zhang W, Li Y, Kumar A, Erasquin UJ, Liu K, Muradov P, Trautner BW, Cai C. Biofunctionalization on alkylated silicon substrate surfaces via “click” chemistry. J Am Chem Soc. 2010;132:16432.

    Article  Google Scholar 

  93. Sun X-L, Stabler CL, Cazalis CS, Chaikof EL. Carbohydrate and protein immobilization onto solid surfaces by sequential Diels–Alder and azide–alkyne cycloadditions. Bioconjugate Chem. 2006;17:52.

    Article  Google Scholar 

  94. Li H, Cheng F, Duft AM, Adronov A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J Am Chem Soc. 2005;127:14518.

    Article  Google Scholar 

  95. Wu P, Feldman AK, Nugent AK, Hawker CJ, Scheel A, Voit B, Pyun J, Frechet JMJ, Sharpless KB, Fokin VV. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angew Chem Int Ed. 2004;43:3928.

    Article  Google Scholar 

  96. Sumerlin BS, Vogt AP. Macromolecular engineering through click chemistry and other efficient transformations. Macromolecules. 2010;43:1.

    Article  Google Scholar 

  97. Malkoch M, Vestberg R, Gupta N, Mespouille L, Dubois P, Mason AF, Hendrick JL, Liao Q, Frank CW, Kingsbury K, et al. Synthesis of well-defined hydrogel networks using click chemistry. Chem Commun. 2006;26:2774.

    Article  Google Scholar 

  98. Li B, Martin AL, Gillies ER. Multivalent polymer vesicles via surface functionalization. Chem Commun. 2007;48:5217.

    Article  Google Scholar 

  99. O’Reilly RK, Joralemon MJ, Wooley KL, Hawker CJ. Functionalization of micelles and shell cross-linked nanoparticles using click chemistry. Chem Mater. 2005;17:5976.

    Article  Google Scholar 

  100. Pearson H, Manti J, Urban MW. Tethered polyelectrolyte stimuli-responsive chains on polymeris surfaces. Biomater Sci. 2014;2:512.

    Article  Google Scholar 

  101. Hudalla GA, Murphy WL. Using “click” chemistry to prepare SAM substrates to study stem cell adhesion. Langmuir. 2009;25:5737.

    Article  Google Scholar 

  102. Adzima BJ, Tao Y, Kloxin CJ, DeForest CA, Anseth KS, Bowman CN. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nat Chem. 2011;3:258.

    Article  Google Scholar 

  103. Nimmo CM, Shoichet MS. Regenerative biomaterials that “click”: simple, aqueous-based protocols for hydrogel synthesis, suface immobilization, and 3D patterning. Bioconjugate Chem. 2011;22:2199.

    Article  Google Scholar 

  104. Wang X, Liu L, Luo Y, Zhao H. Bioconjugation of biotin to the interfaces of polymeric micelles via in situ click chemistry. Langmuir. 2009;25:744.

    Article  Google Scholar 

  105. Prasuhn DE, Singh P, Strable E, Brown S, Manchester M, Finn MG. Plasma clearance of bacteriophage Qβ particles as a function of surface charge. J. Am Chem Soc. 2008;130.

    Google Scholar 

  106. Qing G, Xiong H, Seela F, Sun T. Spatially controlled DNA nanopatterns by “click” chemistry using oligonucleotides with different anchoring sites. J Am Chem Soc. 2010;132:15228.

    Article  Google Scholar 

  107. Aumsuwan N, Heinhorst S, Urban MW. Antibacterial surfaces on expanded polytetrafluoroethylene; penicillin attachment. Biomacromolecules. 2007;8:713.

    Article  Google Scholar 

  108. Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32:698–725.

    Article  Google Scholar 

  109. Houbenov N, Minko S, Stamm M. Mixed polyelectrolyte brush from oppositely charged polymers for switching of surface charge and composition in aqueous environment. Macromolecules. 2003;36:5897.

    Article  Google Scholar 

  110. Ionov L, Houbenov N, Sidorenko A, Stamm M. Inverse and reversible switching gradient surfaces from mixed polyelectrolyte brushes. Langmuir. 2004;20:9916.

    Article  Google Scholar 

  111. Liu F, Urban MW. Dual temperature and pH responsiveness of poly(2-(N, N-dimethylamino)ethyl methacrylate-co-n-butyl acrylate) colloidal dispersions and their films. Macromoleucles. 2008;41:6531.

    Article  Google Scholar 

  112. Tang L, Whalen J, Schutte G, Weder C. Stimuli-responsive epoxy coatings. ACS Appl Mater Interfaces. 2009;1:688.

    Article  Google Scholar 

  113. Liu F, Ramachandran D, Urban MW. Colloidal films that mimic cilia. Adv Funct Mater. 2010;20:3163.

    Article  Google Scholar 

  114. Hua ZD, Chen ZY, Li YZ, Zhao MP. Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin. Lamgmuir. 2008;24:5773.

    Article  Google Scholar 

  115. Webb GF, D’Agata EMC, Magal P, Ruan S. A model of antibiotic-resistant bacterial epidemics in hospitals. Proc Natl Acad Sci. 2005;102:13343.

    Article  Google Scholar 

  116. Twort FW. An investigation on the nature of ultramicroscopic viruses. Lancet. 1915;ii:1241.

    Google Scholar 

  117. Hosseinidoust Z, Van de Ven TGM, Tufenkji N. Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces Langmuir. 2011;27:5472.

    Article  Google Scholar 

  118. Yang L-MC, Tam PY, Murray BJ, McIntire TM, Overstreet CM, Weiss GA, Penner RM. Virus electrodes for universal biodetection. Anal Chem. 2006;78:3265.

    Article  Google Scholar 

  119. Hankin EH. L’action bactericide des eaux de la Jumma et du Gange sur le vibrion du cholera. Ann Inst Pasteur. 1896;10:511.

    Google Scholar 

  120. D’Herelle F. Sur un microbe invisible antagoniste des bacilles dysenteriques. C R Acad Sci. 1917;165:373.

    Google Scholar 

  121. Stone R. Stalin’s forgotten cure. Science. 2002;298:728.

    Article  Google Scholar 

  122. Sulakvelidze A, Alavidze Z, Morris JGJ. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45:649.

    Article  Google Scholar 

  123. Chkhaidze JD, Imedashvili NE. The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus-infected local radiation injuries caused by exposure to Sr90. Clin Exp Dermatol. 2005;30:23.

    Article  Google Scholar 

  124. Li-Mei CY, Phillip YT, Benjamin JM, Theresa MM, Cathie MO, Gregory AW, Penner RM. Virus electrodes for universal biodetection. Anal Chem. 2006;78:3265.

    Article  Google Scholar 

  125. Pearson HA, Sahukhal GS, Elasri MO, Urban MW. Phage-bacterium war on polymeric surfaces: can surface-anchored bacteriophages eliminate microbial infections? Biomacromolecules. 2013;14(5):1257–61.

    Article  Google Scholar 

Download references

Acknowledgments

The National Science Foundation (CMMI 332964) and J. E. Sirrine Foundation at Clemson University are acknowledged for a partial support of these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek W. Urban PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Urban, M. (2015). Advances in Molecular Design of Polymer Surfaces with Antimicrobial, Anticoagulant, and Antifouling Properties. In: Santambrogio, L. (eds) Biomaterials in Regenerative Medicine and the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-319-18045-8_4

Download citation

Publish with us

Policies and ethics