Skip to main content

Abstract

In this chapter, we study special types of isometric group actions on compact Riemannian manifolds, namely those with low cohomogeneity. The cohomogeneity of an action is the codimension of its principal orbits, and can also be regarded as the dimension of its orbit space. Low cohomogeneity is an indication that there are few orbit types, and that the original space has many symmetries. In this situation, it is possible to study many geometric features that are not at reach in the general case. Throughout this chapter, we emphasize connections between the geometry and topology of manifolds with low cohomogeneity stemming from curvature positivity conditions, such as positive (\(\sec > 0\)) and nonnegative (\(\sec \geq 0\)) sectional curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that vertical/horizontal spaces for the submersion \(\rho: M \times G \rightarrow M\) are subspaces of \(T_{p}M \times \mathfrak{g}\), while vertical/horizontal spaces for the G-action on M are subspaces of T p M.

  2. 2.

    Recall Proposition  2.26 (iv).

  3. 3.

    Recall that N(H) is the largest subgroup of G where H is normal, see Exercise 1.61.

  4. 4.

    The reason why \(\mathbb{C}\mathrm{a}P^{2}\) can be constructed as a projectivization of \(\mathbb{C}\mathrm{a}^{3}\) is related to the fact that \(\mathbb{C}\mathrm{a}\) is 2-associative, i.e., any subalgebra generated by 2 elements is associative.

  5. 5.

    For instance, one can write the sphere as S 4n+3 = Sp(n + 1)∕Sp(n), but depending on what Sp(n + 1)-homogeneous metric we consider (e.g., the round metric), the full isometry group may be strictly larger than Sp(n + 1), see Example 6.16 and Remark 6.17.

  6. 6.

    Here, we assume G is connected. This entails no loss of generality, since the restriction to the identity component of a continuous transitive group action on a connected space is still transitive.

    Table 6.1 Transitive actions on spheres, G connected
  7. 7.

    Let us give a brief account of this analysis, see Ziller [235, Sec. 1] for details. On cases (i), (viii) and (ix), since the H-action on \(\mathfrak{m}\) is irreducible, the unique G-homogeneous metric is the round metric. On cases (ii) and (iii), the H-action on \(\mathfrak{m}_{1}\) is the standard U(n)-action on \(\mathbb{C}^{n}\). The metrics obtained in both cases are the same, yielding a family of U(n + 1)-homogeneous metrics on S 2n+1 that depends on two parameters. On case (iv), the H-action on \(\mathfrak{m}_{1}\) is the standard Sp(n)-action on \(\mathbb{H}^{n}\). This gives a family of Sp(n + 1)-homogeneous metrics on S 4n+3 that depends on seven parameters, six of which determine the restriction \(\langle \cdot,\cdot \rangle _{0}\) to \(\mathfrak{m}_{0}\). By appropriately diagonalizing \(A_{0} \in \mathrm{GL}(3, \mathbb{R})\), this family can be further reduced to one that depends on only four parameters. Cases (v) and (vi) are contained in case (iv). Finally, on case (vii), the H-action on the 7-dimensional space \(\mathfrak{m}_{1}\) and on the 8-dimensional space \(\mathfrak{m}_{2}\) are the only irreducible representations of Spin(7) in those dimensions. This gives a family of Spin(9)-homogeneous metrics on S 15 that depends on two parameters. All the above can be normalized so that a 1 = 1, reducing by one the number of parameters of each family.

  8. 8.

    Spheres equipped with the metric g λ are known as Berger spheres; though, historically, this term was mostly used referring to the case of (S 3, g λ ) first studied by Berger.

  9. 9.

    Note that, as no sphere fibers over the Cayley plane \(\mathbb{C}\mathrm{a}P^{2}\), there is no analogous interpretation for the Fubini-Study metric in this case.

  10. 10.

    Besides proving the above statement, this proof indicates that the moduli space of homogeneous metrics with \(\sec \geq 0\) is, in some sense, star-shaped with respect to normal homogeneous metrics.

  11. 11.

    More precisely, a Cheeger deformation of a bi-invariant metric on G with respect to the action of an intermediate subgroup \(H \subset K \subset G\).

  12. 12.

    Slices in this section are generally denoted by D, instead of S as in Chap. 3

  13. 13.

    Note that any cohomogeneity one action is polar, regardless of MG being a closed interval.

  14. 14.

    The possible pairs (K ±, H) with K ± connected for which K ±H is a sphere are listed in Table 6.1.

  15. 15.

    Recall that a map \(f: X \rightarrow Y\) is -connected if the induced homomorphisms \(f_{i}: \pi _{i}(X) \rightarrow \pi _{i}(Y )\) is an isomorphism for i <  and onto for i = .

  16. 16.

    In order for M = F([0, R] × [0, 2π]) to be a smooth closed submanifold of \(\mathbb{R}^{3}\), some conditions on the derivatives of ϕ and ψ at the endpoints are needed. This illustrates the fact that the metrics g t in (6.27) must satisfy appropriate conditions at the corresponding endpoints t → ±1.

  17. 17.

    This is a horizontal curve in the sense that it is orthogonal to all circle orbits. However, in \(\mathbb{R}^{3}\), it sits in the plane y = 0, while the circle orbits are in planes z = const.

  18. 18.

    By definition, the symmetry rank of a manifold (M, g) with an isometric G-action is \(\mathop{\mathrm{rank}}\nolimits G\).

  19. 19.

    This is not a complete classification, as the candidate manifolds \(P_{k}^{7}\) and \(Q_{k}^{7}\) are not yet known to carry cohomogeneity one metrics with \(\sec > 0\), as we explain below.

  20. 20.

    For instance, given \(\sigma,\sigma ' \subset T_{p}M\), one can define dist(σ, σ′) as the Hausdorff distance between the great circles \(\sigma \cap S\) and \(\sigma ' \cap S\), where S is the unit sphere in T p M.

  21. 21.

    For the sake of simplifying notation, here we use the metric g to identify (0, k)-tensors and k-forms, that is, \(\varLambda ^{k}\mathit{TM}\mathop{\cong}\varLambda ^{k}\mathit{TM}^{{\ast}}\). Furthermore, we omit the parentheses, denoting Λ k V: = Λ k(V ).

  22. 22.

    Recall that positive-definiteness of the curvature operator is not preserved under Riemannian submersions. For instance, there are Riemannian submersions from the round sphere onto the projective spaces \(\mathbb{C}P^{n}\) and \(\mathbb{H}P^{n}\), but these only have positive-semidefinite curvature operator.

  23. 23.

    The Bianchi map \(\mathfrak{b}\) on symmetric operators on Λ 2 T p M can be seen as the orthogonal projection onto the subspace of operators induced by 4-forms via (6.46). The complement \(\ker \mathfrak{b}\) of this subspace consists of symmetric operators on \(\varLambda ^{2}T_{p}M\) that satisfy the first Bianchi identity, which are called algebraic curvature operators.

  24. 24.

    Moreover, a complete description of the moduli spaces of homogeneous metrics with strongly positive curvature on all Wallach flag manifolds was achieved in [35]. Namely, it is shown that a homogeneous metric on W 6 or W 12 has strongly positive curvature if and only if it has \(\sec > 0\), while a homogeneous metric on W 24 has strongly positive curvature if and only if it has \(\sec > 0\) and does not submerge onto \(\mathbb{C}\mathrm{a}P^{2}\) endowed with its standard metric.

  25. 25.

    We stress that the only topological obstructions to strongly positive curvature currently known are the obstructions for \(\sec > 0\).

References

  1. A.V. Alekseevsky, D.V. Alekseevsky, Riemannian G-manifold with one-dimensional orbit space. Ann. Glob. Anal. Geom. 11(3), 197–211 (1993)

    MATH  MathSciNet  Google Scholar 

  2. D.V. Alekseevsky, F. Podestà, Compact cohomogeneity one Riemannian manifolds of positive Euler characteristic and quaternionic Kähler manifolds, in Geometry, Topology and Physics, Campinas, 1996 (de Gruyter, Berlin, 1997), pp. 1–33

    Google Scholar 

  3. S. Aloff, N.R. Wallach, An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull. Am. Math. Soc. 81, 93–97 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Amann, L. Kennard, On a generalized conjecture of Hopf with symmetry. arXiv:1402.7255

    Google Scholar 

  5. M. Amann, L. Kennard, Topological properties of positively curved manifolds with symmetry. Geom. Funct. Anal. 24(5), 1377–1405 (2014)

    Article  MathSciNet  Google Scholar 

  6. A. Arvanitogeorgos, An Introduction to Lie Groups and the Geometry of Homogeneous Spaces, Providence (AMS, 1999)

    Google Scholar 

  7. A. Back, W.-Y. Hsiang, Equivariant geometry and Kervaire spheres. Trans. Am. Math. Soc. 304, 207–227 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Baez, The octonions. Bull. Am. Math. Soc. 39(2), 145–205 (2002). Errata: Bull. Am. Math. Soc. (N.S.) 42(2), 213 (2005). arXiv:math/0105155

    Google Scholar 

  9. L. Berard-Bergery, Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive. J. Math. Pures Appl. 55, 47–67 (1976)

    MATH  MathSciNet  Google Scholar 

  10. V.N. Berestovskii, Homogeneous Riemannian manifolds of positive Ricci curvature. Math. Notes 58, 905–909 (1995)

    Article  MathSciNet  Google Scholar 

  11. M. Berger, Les variétés Riemanniennes 1/4-pincées. Ann. Sc. Norm. Super. Pisa Cl. Sci. 14(2), 161–170 (1960)

    MATH  Google Scholar 

  12. M. Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann. Scuola Norm. Sup. Pisa 15, 179–246 (1961)

    MATH  MathSciNet  Google Scholar 

  13. M. Berger, Trois remarques sur les variétés riemanniennes à courbure positive. C. R. Acad. Sci. Paris Sér. A-B 263, A76–A78 (1966)

    Google Scholar 

  14. A.L. Besse, Einstein Manifolds. Series of Modern Surveys in Mathematics (Springer, Berlin, 2002)

    Google Scholar 

  15. R.G. Bettiol, Positive biorthogonal curvature on S 2 × S 2. Proc. Am. Math. Soc. 142(12), 4341–4353 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. R.G. Bettiol, R.A.E. Mendes, Flag manifolds with strongly positive curvature Math. Z. (to appear)

    Google Scholar 

  17. R.G. Bettiol, R.A.E. Mendes, Strongly positive curvature (2014, preprint). arXiv:1403.2117

    Google Scholar 

  18. R.G. Bettiol, P. Piccione, Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calc. Var. Partial Differ. Equ. 47(3–4), 789–807 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. R.G. Bettiol, P. Piccione, Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions. Pac. J. Math. 266(1), 1–21 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. R.G. Bettiol, P. Piccione, Delaunay type hypersurfaces in cohomogeneity one manifolds. arXiv:1306.6043

    Google Scholar 

  21. C. Böhm, Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces. Invent. Math. 134(1), 145–176 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Böhm, Non-existence of cohomogeneity one Einstein metrics. Math. Ann. 314(1), 109–125 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Böhm, M. Wang, W. Ziller, A variational approach for compact homogeneous Einstein manifolds. Geom. Funct. Anal. 14(4), 681–733 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Böhm, B. Wilking, Manifolds with positive curvature operators are space forms. Ann. Math. 167(2), 1079–1097 (2008)

    Article  MATH  Google Scholar 

  25. A. Borel, Some remarks about Lie groups transitive on spheres and tori. Bull. Am. Math. Soc. 55, 580–587 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  26. J.-P. Bourguignon, A. Deschamps, P. Sentenac, Conjecture de H. Hopf sur les produits de variétés. Ann. Sci. École Norm. Sup. 5(4), 277–302 (1972)

    MATH  MathSciNet  Google Scholar 

  27. J.-P. Bourguignon, A. Deschamps, P. Sentenac, Quelques variations particuliéres d’un produit de métriques. Ann. Sci. École Norm. Sup. (4) 6, 1–16 (1973)

    Google Scholar 

  28. J.-P. Bourguignon, H. Karcher, Curvature operators: pinching estimates and geometric examples. Ann. Sci. École Norm. Sup. (4) 11(1), 71–92 (1978)

    Google Scholar 

  29. S. Brendle, Embedded minimal tori in S 3 and the Lawson conjecture. Acta Math. 211(2), 177–190 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Brendle, R. Schoen, Manifolds with 1∕4-pinched curvature are space forms. J. Am. Math. Soc. 22, 287–307 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. T. Bröken, T. Tom Dieck, Representations of Compact Lie Group. Graduate Texts in Mathematics, vol. 98 (Springer, New York, 1995)

    Google Scholar 

  32. J. Cheeger, Some examples of manifolds of nonnegative curvature. J. Differ. Geom. 8, 623–628 (1973)

    MATH  MathSciNet  Google Scholar 

  33. J. Cheeger, D. Ebin, Comparison Theorems in Riemannian Geometry (North-Holland Publishing, Amsterdam, 1975)

    MATH  Google Scholar 

  34. A. Dancer, S. Hall, M. Wang, Cohomogeneity one shrinking Ricci solitons: an analytic and numerical study. Asian J. Math. 17(1), 33–61 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Dancer, M. Wang, The cohomogeneity one Einstein equations from the Hamiltonian viewpoint. J. Reine Angew. Math. 524, 97–128 (2000)

    MATH  MathSciNet  Google Scholar 

  36. A. Dancer, M. Wang, On Ricci solitons of cohomogeneity one. Ann. Glob. Anal. Geom. 39(3), 259–292 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. O. Dearricott, A 7-manifold with positive curvature. Duke Math. J. 158(2), 307–346 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. H. Elíasson, Die Krümmung des Raumes Sp(2)∕SU(2) von Berger. Math. Ann. 164, 317–323 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  39. J.-H. Eschenburg, New examples of manifolds with strictly positive curvature. Invent. Math. 66(3), 469–480 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  40. J.-H. Eschenburg, Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen. Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, 32 (1984)

    Google Scholar 

  41. J.-H. Eschenburg, M. Wang, The initial value problem for cohomogeneity one Einstein metrics. J. Geom. Anal. 10(1), 109–137 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. F. Galaz-Garcia, C. Searle, Cohomogeneity one Alexandrov spaces. Transform. Groups 16(1), 91–107 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. F. Galaz-Garcia, C. Searle, Low-dimensional manifolds with non-negative curvature and maximal symmetry rank. Proc. Am. Math. Soc. 139(7), 2559–2564 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. F. Galaz-Garcia, C. Searle, Nonnegatively curved 5-manifolds with almost maximal symmetry rank. Geom. Topol. 18(3), 1397–1435 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  45. J. Ge, Z. Tang, Isoparametric functions on exotic spheres. J. Reine Angew. Math. 683, 161–180 (2013)

    MATH  MathSciNet  Google Scholar 

  46. J. Ge, Z. Tang, Geometry of isoparametric hypersurfaces in Riemannian manifolds. Asian J. Math. 18(1), 117–125 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  47. K. Grove, Geometry of, and via, symmetries, in Conformal, Riemannian and Lagrangian Geometry, Knoxville, 2000. University Lecture Series, vol. 27 (American Mathematical Society, Providence, 2002), pp. 31–53

    Google Scholar 

  48. K. Grove, C. Searle, Positively curved manifolds with maximal symmetry-rank. J. Pure Appl. Algebra 91(1–3), 137–142 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  49. K. Grove, C. Searle, Differential topological restrictions by curvature and symmetry. J. Differ. Geom. 47(3), 530–559 (1997)

    MATH  MathSciNet  Google Scholar 

  50. K. Grove, L. Verdiani, B. Wilking, W. Ziller, Non-negative curvature obstructions in cohomogeneity one and the Kervaire spheres. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5(2), 159–170 (2006)

    Google Scholar 

  51. K. Grove, L. Verdiani, W. Ziller, An exotic T 1 S 4 with positive curvature. Geom. Funct. Anal. 21(3), 499–524 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. K. Grove, B. Wilking, A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry. Geom. Topol. 18(5), 3091–3110 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  53. K. Grove, B. Wilking, W. Ziller, Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Differ. Geom. 78(1), 33–111 (2008)

    MATH  MathSciNet  Google Scholar 

  54. K. Grove, W. Ziller, Curvature and symmetry of Milnor spheres. Ann. Math. (2) 152(1), 331–367 (2000)

    Google Scholar 

  55. K. Grove, W. Ziller, Cohomogeneity one manifolds with positive Ricci curvature. Invent. Math. 149(3), 619–646 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  56. K. Grove, W. Ziller, Lifting group actions and nonnegative curvature. Trans. Am. Math. Soc. 363(6), 2865–2890 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  57. K. Grove, W. Ziller, Polar manifolds and actions. J. Fixed Point Theory Appl. 11(2), 279–313 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  58. L. Guijarro, G. Walschap, When is a Riemannian submersion homogeneous? Geom. Dedicata 125, 47–52 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  59. F.R. Harvey, Spinors and Calibrations. Vol. 9 of Perspectives in Mathematics (Academic, Boston, 1990)

    Google Scholar 

  60. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics, vol. 34 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  61. W.-Y. Hsiang, Lectures on Lie Groups. Series on University Mathematics, vol. 2 (World Scientific Publishing, River Edge, 2000)

    Google Scholar 

  62. W.C. Hsiang, W.Y. Hsiang, On compact subgroups of the diffeomorphism groups of Kervaire spheres. Ann. Math. 85, 359–369 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  63. W.Y. Hsiang, B. Kleiner, On the topology of positively curved 4-manifolds with symmetry. J. Differ. Geom. 29(3), 615–621 (1989)

    MATH  MathSciNet  Google Scholar 

  64. G. Jensen, Einstein metrics on principal fibre bundles. J. Differ. Geom. 8, 599–614 (1973)

    MATH  Google Scholar 

  65. L. Kennard, On the Hopf conjecture with symmetry. Geom. Topol. 161(1), 563–593 (2013)

    Article  MathSciNet  Google Scholar 

  66. L. Kennard, Positively curved Riemannian metrics with logarithmic symmetry rank bounds. Comment. Math. Helv. 89, 937–962 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  67. M. Kerin, On the curvature of biquotients. Math. Ann. 352(1), 155–178 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  68. B. Kleiner, Riemannian four-manifolds with nonnegative curvature and continuous symmetry, Ph.D. thesis, University of California, Berkeley (1990)

    Google Scholar 

  69. W. Klingenberg, Contributions to Riemannian geometry in the large. Ann. Math. 69(3), 654–666 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  70. W. Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung. Comment. Math. Helv. 35(1), 47–54 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  71. R. Lafuente, J. Lauret, On homogeneous Ricci solitons. Q. J. Math. 65(2), 399–419 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  72. R. Lafuente, J. Lauret, Structure of homogeneous Ricci solitons and the Alekseevskii conjecture. J. Differ. Geom. 98(2), 315–347 (2014)

    MATH  MathSciNet  Google Scholar 

  73. J. Lauret, Ricci flow of homogeneous manifolds. Math. Z. 274(1–2), 373–403 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  74. A. Lytchak, G. Thorbergsson, Curvature explosion in quotients and applications. J. Differ. Geom. 85(1), 117–139 (2010)

    MATH  MathSciNet  Google Scholar 

  75. D. Montgomery, H. Samelson, Transformation groups of spheres. Ann. Math. (2) 44, 454–470 (1943)

    Google Scholar 

  76. M. Müter, Krümmungserhöhende Deformationen mittels Gruppenaktionen, PhD thesis, University of Münster (1987)

    Google Scholar 

  77. A.L. Onishchik, Transitive compact transformation groups. Mat. Sb. 60, 447–485 (1963); translated in English in Am. Math. Soc. Transl. 55, 153–194 (1966)

    Google Scholar 

  78. A.L. Onishchik, Transitive compact transformation groups. Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994. 300 pp. ISBN: 3-335-00355-1

    Google Scholar 

  79. P. Petersen, Riemannian Geometry. Graduate Texts in Mathematics, 171, 2nd edn. New York, NY, USA (Springer, 2006)

    Google Scholar 

  80. P. Petersen, F. Wilhelm, An exotic sphere with positive sectional curvature. arXiv:0805.0812

    Google Scholar 

  81. T. Püttmann, Optimal pinching constants of odd dimensional homogeneous spaces. Invent. Math. 138, 631–684 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  82. H. Rauch, A contribution to differential geometry in the large. Ann. Math. 54(1), 38–55 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  83. L. Schwachhöfer, K. Tapp, Homogeneous metrics with nonnegative curvature. J. Geom. Anal. 19(4), 929–943 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  84. C. Searle, Cohomogeneity and positive curvature in low dimensions. Math. Z. 214, 491–498 (1993): Err. ibet. 226, 165–167 (1997)

    Google Scholar 

  85. C. Searle, F. Wilhelm, How to lift positive Ricci curvature (2013, preprint). arXiv:1311.1809

    Google Scholar 

  86. M. Strake, Variationen von Metriken nichtnegativer Schnittkrümmung. PhD thesis, University of Münster (1986)

    Google Scholar 

  87. M. Strake, Curvature increasing metric variations. Math. Ann. 276(4), 633–641 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  88. J.A. Thorpe, On the curvature tensor of a positively curved 4-manifold, in Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress, Dalhousie University, Halifax, 1971, vol. 2 (Canadian Mathematical Congress, Montreal, 1972), pp. 156–159

    Google Scholar 

  89. J.A. Thorpe, The zeros of nonnegative curvature operators. J. Differ. Geom. 5, 113–125 (1971). Erratum: J. Differ. Geom. 11(2), 315 (1976)

    Google Scholar 

  90. F.M. Valiev, Precise estimates for the sectional curvatures of homogeneous Riemannian metrics on Wallach spaces. Sib. Mat. Zhurn. 20, 248–262 (1979)

    MATH  MathSciNet  Google Scholar 

  91. L. Verdiani, Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature. J. Differ. Geom. 68, 31–72 (2004)

    MATH  MathSciNet  Google Scholar 

  92. L. Verdiani, W. Ziller, Positively curved homogeneous metrics on spheres. Math. Z. 261(3), 473–488 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  93. L. Verdiani, W. Ziller, Concavity and rigidity in non-negative curvature. J. Differ. Geom. 97, 349–375 (2014)

    MATH  MathSciNet  Google Scholar 

  94. N.R. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. Math. 96, 277–295 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  95. M. Wang, W. Ziller, On normal homogeneous Einstein manifolds. Ann. Sci. École Norm. Sup. (4) 18(4), 563–633 (1985)

    Google Scholar 

  96. M. Wang, W. Ziller, Existence and nonexistence of homogeneous Einstein metrics. Invent. Math. 84(1), 177–194 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  97. B. Wilking, Positively curved manifolds with symmetry. Ann. Math. 163, 607–668 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  98. B. Wilking, Nonnegatively and positively curved manifolds, in Surveys in Differential Geometry, ed. by J. Cheeger, K. Grove, vol. XI (International Press, Somerville, 2007), pp. 25–62

    Google Scholar 

  99. B. Wilking and W. Ziller. Revisiting homogeneous spaces with positive curvature. (2015, preprint) arXiv:1503.06256

    Google Scholar 

  100. J. Yeager, Geometric and topological ellipticity in cohomogeneity two. Ph.D. thesis, University of Maryland (2012)

    Google Scholar 

  101. W. Ziller, On M. Mueter’s Ph.D. thesis on Cheeger deformations. arXiv:0909.0161

    Google Scholar 

  102. W. Ziller, Homogeneous Einstein metrics on spheres and projective spaces. Math. Ann. 259(3), 351–358 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  103. W. Ziller, Examples of Riemannian manifolds with non-negative sectional curvature, in Surveys in Differential Geometry, ed. by J. Cheeger, K. Grove, vol. XI (International Press, Somerville, 2007), pp. 63–102

    Google Scholar 

  104. S. Zoltek, Nonnegative curvature operators: some nontrivial examples. J. Differ. Geom. 14, 303–315 (1979)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alexandrino, M.M., Bettiol, R.G. (2015). Low Cohomogeneity Actions and Positive Curvature. In: Lie Groups and Geometric Aspects of Isometric Actions. Springer, Cham. https://doi.org/10.1007/978-3-319-16613-1_6

Download citation

Publish with us

Policies and ethics