Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 851))

Abstract

Cytochrome P450 (P450 or CYP) enzymes in their resting state contain the heme-iron in a high-spin FeIII state. Binding of a substrate to a P450 enzyme allows transfer of the first electron, producing a FeII species that reacts with oxygen to generate a low-spin iron superoxide intermediate (FeIII–O–O) ready to accept the second electron to produce an iron peroxy anion intermediate (a, FeIII–O–O). In classical monooxygenation reactions, the peroxy anion upon protonation fragments to form the reactive Compound I intermediate (Por•+FeIV=O), or its ferryl radical resonance form (FeIV–O). However, when the substrate projects a carbonyl functionality, of the type b, at the active site as is the case for reactions catalyzed by CYP17A1, CYP19A1 and CYP51A1, the peroxy anion (FeIII–O–O) is trapped, yielding a tetrahedral intermediate (c) that fragments to an acyl-carbon cleavage product (d plus an acid). Analogous acyl-carbon cleavage reactions are also catalyzed by certain hepatic P450s and CYP125A1 from Mycobacterium tuberculosis. A further improvisation on the theme is provided by aldehyde deformylases that convert long-chain aliphatic aldehydes to hydrocarbons. CYP17A1 is involved in the biosynthesis of corticoids as well as androgens. The flux toward these two classes of hormones seems to be regulated by cytochrome b 5, at the level of the acyl-carbon cleavage reaction. It is this regulation of CYP17A1 that provides a safety mechanism, ensuring that during corticoid biosynthesis, which requires 17α-hydroxylation by CYP17A1, androgen formation is avoided (Fig. 4.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omura T, Sato RA (1962) New cytochrome in liver microsomes. J Biol Chem 237:1375–1376

    CAS  PubMed  Google Scholar 

  2. Ortiz de Montellano PR (2005) Cytochrome P-450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Press, New York

    Book  Google Scholar 

  3. Akhtar M, Calder MR, Corina DL, Wright JN (1981) The status of oxygen atoms in the removal of C-19 in oestrogen biosynthesis. J Chem Soc Chem Commun:129−131

    Google Scholar 

  4. Akhtar M, Calder MR, Corina DL, Wright JN (1982) Mechanistic studies on C-19 demethylation in oestrogen biosynthesis. Biochem J 201:569–580

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Stevenson DE, Wright JN, Akhtar M (1988) Mechanistic consideration of P-450 dependent enzymic reactions: studies on oestriol biosynthesis. J Chem Soc Perkin Trans 1:2043–2052

    Article  Google Scholar 

  6. Akhtar M, Wright JN (1991) A unified mechanistic view of oxidative reactions catalysed by P-450 and related Fe-containing enzymes. Nat Prod Rep 8:527–551

    Article  CAS  PubMed  Google Scholar 

  7. Groves JT (2005) Models and mechanisms of cytochrome P450 action. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 1–43

    Chapter  Google Scholar 

  8. Makris TM, Denisov I, Schlichting I, Sligar SG (2005) Activation of molecular oxygen by cytochrome P450. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 149–182

    Chapter  Google Scholar 

  9. Sharrock M, Debrunner PG, Shultz C, Lipscomb JD, Marshall VP, Gunsalus IC (1976) Cytochrome P-450cam and its complexes: mossbauer parameter of the haem-iron. Biochim Biophys Acta 420:8–26

    Article  CAS  PubMed  Google Scholar 

  10. Weiss JJ (1964) Nature of the iron-oxygen bond in oxyhaemoglobin. Nature 202:83–84

    Article  CAS  PubMed  Google Scholar 

  11. Pauling L (1964) Nature of the iron–oxygen bond in oxyhæmoglobin. Nature 203:182–183

    Article  CAS  Google Scholar 

  12. Morato T, Hyano M, Dorfman RI, Axelrod LR (1961) The intermediate steps in the biosynthesis of estrogens from androgens. Biochem Biophys Res Commun 20:334–338

    Article  Google Scholar 

  13. Ryan KJ (1959) Biological aromatisation of steroids. J Biol Chem 234:268–272

    CAS  PubMed  Google Scholar 

  14. Akhtar M, Skinner SJM (1968) The intermediary role of a 19-oxoandrogen in the biosynthesis of oestrogen. Biochem J 109:318–321

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Skinner SJM, Akhtar M (1969) The stereospecific removal of a C-19 hydrogen atom in oestrogen biosynthesis. Biochem J 114:75–81

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Arigoni D, Battaglia R, Akhtar M, Smith T (1975) Stereospecificity of oxidation at C-19 in oestrogen biosynthesis. J Chem Soc Chem Commun 185–186

    Google Scholar 

  17. Osawa Y, Shibata K, Rohrer D, Week C, Duax WL (1975) Reassignment of the absolute configuration of 19-substituted 19-hydroxysteroids and stereomechanism of estrogen biosynthesis. J Am Chem Soc 97:4400–4402

    Article  CAS  PubMed  Google Scholar 

  18. Thompson EA, Siiteri PK (1974) Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J Biol Chem 249:5364–5374

    CAS  PubMed  Google Scholar 

  19. Bloch K (1965) The biological synthesis of cholesterol. Science 150:19–28

    Article  CAS  PubMed  Google Scholar 

  20. Miller WL, Brady DR, Gaylor JL (1971) Investigation of the component reactions of oxidative demethylation of sterols: metabolism of 4α-hydroxymethyl steroids. J Biol Chem 246:5147–5153

    CAS  PubMed  Google Scholar 

  21. Bloxham DP, Wilton DC, Akhtar M (1971) Studies on the mechanism and regulation of C-4 demethylation in cholesterol biosynthesis: the role of adenosine 3′,5′- cyclic monophosphate. Biochem J 125:625–634

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Rahier A (2011) Dissecting the sterol C-4 demethylation process in higher plants. From structures and genes to catalytic mechanism. Steroids 76:350–352

    Article  Google Scholar 

  23. Olson JA, Landberg M, Bloch K (1957) On the demethylation of lanosterol to cholesterol. J Biol Chem 228:941–956

    Google Scholar 

  24. Canonica L, Fiecchi A, Kienele MG, Scala A, Galli G, Paoletti EG, Paoletti RJ (1968) The fate of the 15-beta hydrogen of lanosterol in cholesterol biosynthesis. J Am Chem Soc 90:3597–3598

    Article  CAS  PubMed  Google Scholar 

  25. Akhtar M, Rahimtula AD, Watkinson IA, Wilton DC, Munday KA (1969) The status of C-6, C-7, C-15 and C-16 hydrogen atoms in cholesterol biosynthesis. Eur J Biochem 9:107–111

    Article  CAS  PubMed  Google Scholar 

  26. Gibson GF, Goad LJ, Goodwin TW (1968) J Chem Soc Chem Commun:1458−1460

    Google Scholar 

  27. Watkinson IA, Wilton DC, Munday KA, Akhtar M (1971) The formation and reduction of the 14,15-double bond in cholesterol biosynthesis. Biochem J 121:131–137

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Akhtar M, Freeman CW, Wilton DC, Boar RB, Copsey DB (1977) The pathway for the removal of the 14α-methyl group of lanosterol: the role of lanost-8-ene-3β,32-diol in cholesterol biosynthesis. Bioorg Chem 6:473–481

    Article  CAS  Google Scholar 

  29. Akhtar M, Alexander K, Boar RB, McGhie JF, Barton DHR (1978) Chemical and enzymic studies on the characterisation of intermediates during the removal of the 14α-methyl group in cholesterol biosynthesis. Biochem J 169:449–463

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Shyadehi AZ, Lamb DC, Kelly SL, Kelly DE, Schunck WH, Wright JN, Corina D, Akhtar M (1996) The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14α-demethylase of Candida albicans (other names are: lanosterol 14α-demethylase, P-45014DM and CYP51). J Biol Chem 271:12445–12450

    Article  CAS  PubMed  Google Scholar 

  31. Nakajin S, Hall SPF, Onoda M (1981) Testicular microsomal cytochrome P-450 for C21 steroid side chain cleavage. Spectral and binding studies. J Biol Chem 256:6134–6139

    CAS  PubMed  Google Scholar 

  32. Nakajin S, Takahashi M, Shinoda M, Hall SPF (1985) Cytochrome b5 promotes the synthesis of Δ16–C19 steroids by homogeneous cytochrome P-450 C21 side-chain cleavage from pig testes. Biochem Biophys Res Commun 132:708–713

    Article  CAS  PubMed  Google Scholar 

  33. Lee-Robichaud P, Wright JN, Akhtar ME, Akhtar M (1995) Modulation of the activity of human 17α-hydroxylase-17,20-lyase (CYP17) by cytochrome b 5: endocrinological and mechanistic implications. Biochem J 308:901–908

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Gower BD, Holland KT, Mallet AI, Rennie PJ, Watkins WJ (1994) Comparison of 16-androstene steroid concentrations in sterile apocrine sweat and axillary secretions: interconversion of 16-androstenes by the axillary microflora–a mechanism for axillary odour production on man? J Steroid Biochem Mol Biol 48:409–418

    Article  CAS  PubMed  Google Scholar 

  35. Miller SL, Wright JN, Corina DL, Akhtar M (1991) Mechanistic studies on pregnene side-chain cleavage enzyme (17α-hydroxylase-17,20-lyase) using 18O. J Chem Soc Chem Commun:157−159

    Google Scholar 

  36. Akhtar M, Corina DL, Miller SL, Shyadehi AZ, Wright JN (1994) Mechanism of the acyl-carbon cleavage and related reactions catalysed by multifunctional P-450s: studies on cytochrome P-45017α. Biochemistry 33:4410–4418

    Article  CAS  PubMed  Google Scholar 

  37. Akhtar M, Corina DL, Miller SL, Shyadehi AZ, Wright JN (1994) Incorporation of label from 18O2 into acetate during side-chain cleavage catalysed by cytochrome P-45017α (17α-hyroxylase-17,20-lyase). J Chem Soc Perkin Trans 1:263–267

    Article  Google Scholar 

  38. Lee-Robichaud P, Shyadehi AZ, Wright JN, Akhtar ME, Akhtar M (1995) Mechanistic kinship between hydroxylation and desaturation reactions: acyl-carbon cleavage promoted by pig and human CYP17 (P-45017α; 17α-hydroxylase-17,20-lyase. Biochemistry 34:14104–14113

    Article  CAS  PubMed  Google Scholar 

  39. Imai T, Globerman H, Gertner JM, Kagawa N, Waterman MR (1993) Expression and purification of functional human 17α-hydroxylase/17,20-lyase (P450c17) in Escherichia coli. Use of this system for study of a novel form of combined 17α-hydroxylase/17,20-lyase deficiency. J Biol Chem 268:19681–19689

    CAS  PubMed  Google Scholar 

  40. Akhtar M, Corina DL, Pratt J, Smith T (1976) Studies on the removal of C-19 in oestrogen biosynthesis using 18O2. J Chem Soc Chem Commun:854−856

    Google Scholar 

  41. Gregory M, Mak PJ, Sligar SG, Kinkaid JR (2013) Differential hydrogen bonding in human CYP17 dictates hydroxylation versus lyase chemistry. Angew Chem Int Ed 52:5342–5345

    Article  CAS  Google Scholar 

  42. Sen K, Hackett JC (2012) Coupled electron transfer and proton hopping in the final step of CYP19-catalyzed androgen aromatization. Biochemistry 51:3039–3049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Cheng Q, Sohl CD, Yoshimoto FK, Guengerich FP (2012) Oxidation of dihydrotestosterone by human cytochromes P450 19A1 and 3A4. J Biol Chem 287:29554–29567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Goto J, Fishman J (1977) Participation of a non-enzymic transformation in the biosynthesis of estrogens from androgens. Science 195:80–81

    Article  CAS  PubMed  Google Scholar 

  45. Caspi E, Wicha J, Arunachalam T, Nelson P, Spiteller G (1984) Estrogen biosynthesis. Concerning the obligatory intermediary of 2β-hydroxy-10β-formylandrost-4-ene-3,17-dione. J Am Chem Soc 106:7282–7283

    Article  CAS  Google Scholar 

  46. Cole PA, Bean JM, Robinson CH (1990) Conversion of a 3-deoxysteroid to 3-deoxyestrogen by human placental aromatase. Proc Natl Acad Sci U S A 87:2999–3003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Numazawa M, Nagoaka M, Sohtome N (2005) Aromatase reaction of 3-deoxyandrogens: steric mode of the C-19 oxygenation and cleavage of the C10-C19 bond by human placental aromatase. Biochemistry 44:10839–10485

    Article  CAS  PubMed  Google Scholar 

  48. Hackett JC, Brueggermeier RB, Hadad CM (2005) The final step of cytochrome P450 aromatase: a density functional theory study. J Am Chem Soc 127:5224–5287

    Article  CAS  PubMed  Google Scholar 

  49. Gosh D, Griswold J, Erman M, Pangborn W (2009) Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature 457:219–223

    Article  Google Scholar 

  50. Kadoharma N, Yarborough C, Zhou D, Chen S, Osawa Y (1992) Kinetic properties of aromatase mutants Pro308Phe, Asp309Asn and Asp309Ala and their interactions with aromatase inhibitors. J Steroid Biochem Mol Biol 43:693–701

    Article  Google Scholar 

  51. Nagano S, Poulos TL (2005) Crystallographic study on the dioxygen complex of wild-type and mutant cytochrome P450cam. Implications for the dioxygen activation mechanism. J Biol Chem 280:31659–31663

    Article  CAS  PubMed  Google Scholar 

  52. Nagano S, Cupp-Vickery JR, Poulos TL (2005) Crystal structures of the ferrous dioxygen complex of wild-type cytochrome P450eryF and its mutants, A245S and A245T: investigation of the proton transfer system in P450eryF. J Biol Chem 280:22102–22107

    Article  CAS  PubMed  Google Scholar 

  53. Sen K, Hackett JC (2010) Peroxy-iron mediated deformylation in sterol 14α-demethylase catalysis. J Am Chem Soc 132:10293–10305

    Article  CAS  PubMed  Google Scholar 

  54. Robichaud P, Wright JN, Akhtar M (1994) Involvement of an O2-derived nucleophilic species in acyl-carbon cleavage, catalysed by cytochrome P-45017α: implications for related P-450 catalysed fragmentation reactions. J Chem Soc Chem Commun:1501−1503

    Google Scholar 

  55. Roberts ES, Vaz ADN, Coon MJ (1991) Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: deformylation with olefin formation. Proc Natl Acad Sci U S A 88:8963–8966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Sivaramakrishnan S, Ouellet H, Matsumura H, Guan S, Moënne-Loccoz P, Burlingame AL, Ortiz de Montellano PR (2012) Proximal ligand electron donation and reactivity of the cytochrome P450 ferric–peroxo anion. J Am Chem Soc 134:6673–6684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  PubMed  Google Scholar 

  58. Pandelia ME, Li N, Nørgaard H, Warui DM, Rajakovich LJ, Chang W, Booker SJ, Krebs C, Bollinger JM Jr (2013) Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate. J Am Chem Soc 135:15801–15812

    Article  CAS  PubMed  Google Scholar 

  59. Katagiri M, Kagawa N, Waterman MR (1995) The role of cytochrome b5 in the biosynthesis of androgens by human P-450c17. Arch Biochem Biophys 317:343–347

    Article  CAS  PubMed  Google Scholar 

  60. Lee-Robichaud P, Kaderbhai MA, Kaderbhai N, Wright JN, Akhtar M (1997) Interaction of human CYP17 (P-45017α, 17α-hydroxylase-17,20-lyase) with cytochrome b 5: importance of the orientation of the hydrophobic domain of cytochrome b 5. Biochem J 321:857–863

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Suzuki T, Sasano H, Sawai T, Mason JI, Nagura H (1992) Immunohistochemistry and in situ hybridization of P-45017α (17α-hydroxylase/17,20-lyase). J Histochem Cytochem 40:903–908

    Article  CAS  PubMed  Google Scholar 

  62. Dharia S, Slane A, Jian M, Connor M, Conley A, Parker CR Jr (2004) Colocalization of P450c17 and cytochrome b5 in androgen-synthesizing tissues of the human. Biol Reprod 71:83–88

    Article  CAS  PubMed  Google Scholar 

  63. Mapes S, Tarantal A, Parker CR Jr, Moran FM, Bahr JM, Pyter L, Conley A (2002) Adrenocortical cytochrome b5 expression during fetal development of the rhesus macaque. Endocrinology 143:1451–1458

    Article  CAS  PubMed  Google Scholar 

  64. Kaneko TC, Freije WA, Carr BR, Rainey WE (2000) Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies. Clin Endocrinol 53:739–747

    Article  Google Scholar 

  65. Mason JI, Estabrook RW, Purvis JL (1973) Testicular cytochrome P-450 and iron-sulphur protein as related to steroid metabolism. Ann NY Acad Sci 212:406–419

    Article  CAS  PubMed  Google Scholar 

  66. Sakai Y, Yanase T, Takayanagi R, Nakao R, Nishi Y, Haji M, Nawata H (1993) High expression of cytochrome b5 in adrenocortical adenomas from patients with Cushing’s syndrome associated with high secretion of adrenal androgens. J Clin Endocrinol Metab 76:1286–1290

    CAS  PubMed  Google Scholar 

  67. Sakai Y, Yanase T, Hara T, Takayanagi R, Haji M, Nawata H (1994) In-vitro evidence for the regulation of 17,20-lyase activity by cytochrome b5 in adrenocortical adenomas from patients with Cushing’s syndrome. Clin Endocrinol Oxf 40:205–209

    Article  CAS  PubMed  Google Scholar 

  68. Sakai Y, Yanase T, Hara T, Takayanagi R, Haji M, Nawata H (1994) Mechanism of abnormal production of adrenal androgens in patients with adrenocortical adenomas and carcinomas. J Clin Endocrinol Metab 78:36–40

    CAS  PubMed  Google Scholar 

  69. Yanase T, Sasano H, Yubisui T, Sakai Y, Takayanagi R, Nawata H (1998) Immunohistochemical study of cytochrome b5 in human adrenal gland and in adrenocortical adenomas from patients with Cushing’s syndrome. Endocr J 45:89–95

    Article  CAS  PubMed  Google Scholar 

  70. Ravichandran KG, Boddupalli SS, Hasemann CA, Peterson JA, Deisenhofer J (1993) Crystal-structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450s. Science 261:731–736

    Article  CAS  PubMed  Google Scholar 

  71. Geller DH, Auchus RJ, Mendonca BB, Miller WL (1997) The genetic and functional basis of isolated 17,20-lyase deficiency. Nat Genet 17:201–205

    Article  CAS  PubMed  Google Scholar 

  72. Lee-Robichaud P, Akhtar ME, Akhtar M (1998) Control of androgen biosynthesis in the human through the interaction of Arg347 and Arg358 of CYP17 with cytochrome b 5. Biochem J 332:293–296

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Lee-Robichaud P, Akhtar ME, Akhtar M (1999) Lysine mutagenesis identifies cationic charges of human CYP17 that interact with cytochrome b 5 to promote male sex-hormone biosynthesis. Biochem J 342:309–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Lee-Robichaud P, Akhtar ME, Wright JN, Sheikh QI, Akhtar M (2004) The cationic charges on Arg347, Arg358 and Arg449 of human cytochrome P450c17 (CYP17) are essential for the enzyme’s cytochrome b 5-dependent acyl-carbon cleavage activities. J Steroid Biochem Mol Biol 92:119–130

    Article  CAS  PubMed  Google Scholar 

  75. Akhtar M, Wright JN, Lee-Robichaud P (2011) A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J Steroid Biochem Mol Biol 125:2–12

    Article  CAS  PubMed  Google Scholar 

  76. Jacqueline L, Naffin-Olivos JL, Auchus RJ (2006) Human cytochrome b 5 requires residues E48 and E49 to stimulate the 17,20-lyase activity of cytochrome P450c17. Biochemistry 45:755–762

    Article  Google Scholar 

  77. Estrada DF, Laurence JE, Scott EE (2013) Substrate-modulated cytochrome P450 17A1 and cytochrome b 5 interactions revealed by NMR. J Biol Chem 288:17008–17018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Pompon D, Coon MJ (1984) On the mechanism of action of cytochrome P-450: oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b 5. J Biol Chem 259:15377–15385

    CAS  PubMed  Google Scholar 

  79. Mapes S, Corbin CJ, Tarantal A, Conley A (1999) The primate adrenal zona reticularis is defined by expression of cytochrome b5, 17α-hydroxylase/17,20-lyase cytochrome P450 (P450c17) and NADPH-cytochrome P450 reductase (reductase) but not 3β-hydroxysteroid dehydrogenase/Δ5-4-isomerase (3β-HSD). J Clin Endocrinol Metab 84:3382–3385

    CAS  PubMed  Google Scholar 

  80. Hrycay EG, Bandiera SM (2012) The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch Biochem Biophys 522:71–89

    Article  CAS  PubMed  Google Scholar 

  81. Wertz DL, Valentine JS (2000) Nucleophilicity of iron-peroxo porphyrin complexes. Struct Bonding 97:37–60

    CAS  Google Scholar 

Download references

Reviews

Apart from citations in the text [2, 58, 75], useful reviews dealing with specific aspects of the subject are available [80, 81].

Note added in proof

Recently another alternative to the mechanism of Scheme 4.11 has been suggested (Yoshimoto FK, Guengerich FP, J Am Chem Soc 136: 15016–25).

Acknowledgments

We acknowledge with pleasure the help of Dr. Peter Lee-Robichaud in writing the section on the interaction of CYP17A1 with cytochrome b 5, an area in which he has made seminal contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akhtar, M., Wright, J.N. (2015). Acyl-Carbon Bond Cleaving Cytochrome P450 Enzymes: CYP17A1, CYP19A1 and CYP51A1. In: Hrycay, E., Bandiera, S. (eds) Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology, vol 851. Springer, Cham. https://doi.org/10.1007/978-3-319-16009-2_4

Download citation

Publish with us

Policies and ethics