Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 851))

Abstract

Cytochrome P450 (P450 or CYP) catalysis involves the oxygenation of organic compounds via a series of catalytic intermediates, namely, the ferric-peroxo, ferric-hydroperoxo, Compound I (Cpd I) and FeIII−(H2O2) intermediates. Now that the structures of P450 enzymes have been well established, a major focus of current research in the P450 area has been unraveling the intimate details and activities of these reactive intermediates. The general consensus is that the Cpd I intermediate is the most reactive species in the reaction cycle, especially when the reaction involves hydrocarbon hydroxylation. Cpd I has recently been characterized experimentally. Other than Cpd I, there is a multitude of evidence, both experimental as well as theoretical, supporting the involvement of other intermediates in various types of oxidation reactions. The involvement of these multiple oxidants has been experimentally demonstrated using P450 active-site mutants in epoxidation, heteroatom oxidation and dealkylation reactions. In this chapter, we will review the P450 reaction cycle and each of the reactive intermediates to discuss their role in oxidation reactions.

Abbreviations: Cpd I or Cpd II compound I or II of a heme enzyme, an FeIV=O radical cation species, CPO chloroperoxidase, CYP or P450 cytochrome P450, CYP119A1 orphan P450 from Sulfolobus acidocaldarius, CYP2B4 phenobarbital-inducible rabbit liver microsomal P450 enzyme (P450LM2), CYP2E1 alcohol-inducible rabbit liver microsomal P450 enzyme (P450LM3), CYP51A1 lanosterol 14α-demethylase, ENDOR electron-nuclear double resonance, EPR electron paramagnetic resonance, ES enzyme-substrate complex, FAD flavin adenine dinucleotide, FMN flavin mononucleotide, heme iron protoporphyrin IX (heme-b), KIE kinetic isotope effect, NOS nitric oxide synthase enzyme, P450BM3 fatty acid hydroxylating P450 enzyme from Bacillus megaterium, P450CAM camphor-hydroxylating P450 enzyme from Pseudomonas putida, RH substrate, ROH oxidized substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Poulos TL, Johnson EF (2005) Structures of cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 87–114

    Chapter  Google Scholar 

  2. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888

    Article  CAS  PubMed  Google Scholar 

  3. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes: I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    CAS  PubMed  Google Scholar 

  4. Filatov M, Reckien W, Peyerimhoff SD, Shaik S (2000) What are the reasons for the kinetic stability of a mixture of H2 and O2? J Phys Chem A 104:12014–12020

    Article  CAS  Google Scholar 

  5. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263

    Article  CAS  PubMed  Google Scholar 

  6. Sligar SG, Makris TM, Denisov IG (2005) Thirty years of microbial P450 monooxygenase research: peroxo-heme intermediates—the central bus station in heme oxygenase catalysis. Biochem Biophys Res Commun 338:346–354

    Article  CAS  PubMed  Google Scholar 

  7. Meunier B (1992) Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev 92:1411–1456

    Article  CAS  Google Scholar 

  8. Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139

    Article  CAS  PubMed  Google Scholar 

  9. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  10. Nebert DW, Gonzalez FJ (1987) P450 genes: structure, evolution, and regulation. Annu Rev Biochem 56:945–993

    Article  CAS  PubMed  Google Scholar 

  11. Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    CAS  PubMed  Google Scholar 

  12. Ruettinger RT, Wen LP, Fulco AJ (1989) Coding nucleotide, 5′ regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem 264:10987–10995

    CAS  PubMed  Google Scholar 

  13. Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-Å crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260:16122–16130

    CAS  PubMed  Google Scholar 

  14. Gunsalus IC, Pederson TC, Sligar SG (1975) Oxygenase-catalyzed biological hydroxylations. Annu Rev Biochem 44:377–407

    Article  CAS  PubMed  Google Scholar 

  15. Meunier B, de Visser SP, Shaik S (2004) Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev 104:3947–3980

    Article  CAS  PubMed  Google Scholar 

  16. Winfield ME (1965) Mechanisms of oxygen uptake: the autoxidation of myoglobin and of reduced cyanocobaltates and their significance to oxidase reactions. In: King TE, Mason HS, Morrison M (eds) Oxidases and related redox systems, vol 1. Wiley, New York, pp 115–130

    Google Scholar 

  17. Dunford HB, Stillman JS (1976) On the function and mechanism of action of peroxidases. Coord Chem Rev 19:187–251

    Article  CAS  Google Scholar 

  18. Imai M, Shimada H, Watanabe Y, Matsushima-Hibiya Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sci U S A 86:7823–7827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Egawa T, Shimada H, Ishimura Y (1994) Evidence for compound I formation in the reaction of cytochrome P450cam with m-chloroperbenzoic acid. Biochem Biophys Res Commun 201:1464–1469

    Article  CAS  PubMed  Google Scholar 

  20. Schünemann V, Lendzian F, Jung C, Contzen J, Barra AL, Sligar SG, Trautwein AX (2004) Tyrosine radical formation in the reaction of wild type and mutant cytochrome P450cam with peroxy acids: a multifrequency EPR study of intermediates on the millisecond time scale. J Biol Chem 279:10919–10930

    Article  PubMed  Google Scholar 

  21. Spolitak T, Dawson JH, Ballou DP (2005) Reaction of ferric cytochrome P450cam with peracids: kinetic characterization of intermediates on the reaction pathway. J Biol Chem 280:20300–20309

    Article  CAS  PubMed  Google Scholar 

  22. Shimada H, Watanabe Y, Imai M, Makino R, Koga H, Horiuchi T, Ishimura Y (1991) The role of threonine 252 in the oxygen activation by cytochrome P-450 cam: mechanistic studies by site-directed mutagenesis. In: Simandi LI (ed) Dioxygen activation and homogeneous catalytic oxidation. Elsevier, Amsterdam, pp 3136–3319

    Google Scholar 

  23. Auclair K, Moënne-Loccoz P, Ortiz de Montellano PR (2001) Roles of the proximal heme thiolate ligand in cytochrome P450cam. J Am Chem Soc 123:4877–4885

    Article  CAS  PubMed  Google Scholar 

  24. Perera R, Sono M, Sigman JA, Pfister TD, Lu Y, Dawson JH (2003) Neutral thiol as a proximal ligand to ferrous heme iron: implications for heme proteins that lose cysteine thiolate ligation on reduction. Proc Natl Acad Sci U S A 100:3641–3646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Yoshioka S, Takahashi S, Ishimori K, Morishima I (2000) Roles of the axial push effect in cytochrome P450cam studied with the site-directed mutagenesis at the heme proximal site. J Inorg Biochem 81:141–151

    Article  CAS  PubMed  Google Scholar 

  26. Yoshioka S, Tosha T, Takahashi S, Ishimori K, Hori H, Morishima I (2002) Roles of the proximal hydrogen bonding network in cytochrome P450cam-catalyzed oxygenation. J Am Chem Soc 124:14571–14579

    Article  CAS  PubMed  Google Scholar 

  27. Dawson JH (1988) Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240:433–439

    Article  CAS  PubMed  Google Scholar 

  28. Dawson JH, Holm RH, Trudell JR, Barth G, Linder RE, Bunnenberg E, Djerassi C, Tang SC (1976) Oxidized cytochrome P-450. Magnetic circular dichroism evidence for thiolate ligation in the substrate-bound form. Implications for the catalytic mechanism. J Am Chem Soc 98:3707–3709

    Article  CAS  PubMed  Google Scholar 

  29. Poulos TL, Kraut J (1980) The stereochemistry of peroxidase catalysis. J Biol Chem 255:8199–8205

    CAS  PubMed  Google Scholar 

  30. Martinis SA, Atkins WM, Stayton PS, Sligar SG (1989) A conserved residue of cytochrome P-450 is involved in heme-oxygen stability and activation. J Am Chem Soc 111:9252–9253

    Article  CAS  Google Scholar 

  31. Yeom H, Sligar SG, Li H, Poulos TL, Fulco AJ (1995) The role of Thr268 in oxygen activation of cytochrome P450BM-3. Biochemistry 34:14733–14740

    Article  CAS  PubMed  Google Scholar 

  32. Imai Y, Nakamura M (1988) The importance of threonine-301 from cytochromes P-450 (laurate (ω-1)-hydroxylase and testosterone 16α-hydroxylase) in substrate binding as demonstrated by site-directed mutagenesis. FEBS Lett 234:313–315

    Article  CAS  PubMed  Google Scholar 

  33. Raag R, Martinis SA, Sligar SG, Poulos TL (1991) Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala. Biochemistry 30:11420–11429

    Article  CAS  PubMed  Google Scholar 

  34. Harris DL, Loew GH (1996) Investigation of the proton-assisted pathway to formation of the catalytically active, ferryl species of P450s by molecular dynamics studies of P450eryF. J Am Chem Soc 118:6377–6387

    Article  CAS  PubMed  Google Scholar 

  35. Truan G, Peterson JA (1998) Thr268 in substrate binding and catalysis in P450BM-3. Arch Biochem Biophys 349:53–64

    Article  CAS  PubMed  Google Scholar 

  36. Vidakovic M, Sligar SG, Li H, Poulos TL (1998) Understanding the role of the essential Asp251 in cytochrome P450cam using site-directed mutagenesis: crystallography, and kinetic solvent isotope effect. Biochemistry 37:9211–9219

    Article  CAS  PubMed  Google Scholar 

  37. Gerber NC, Sligar SG (1994) A role for Asp-251 in cytochrome P-450cam oxygen activation. J Biol Chem 269:4260–4266

    CAS  PubMed  Google Scholar 

  38. Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science 330:933–937

    Article  CAS  PubMed  Google Scholar 

  39. Loida PJ, Sligar SG (1993) Molecular recognition in cytochrome P-450: mechanism for the control of uncoupling reactions. Biochemistry 32:11530–11538

    Article  CAS  PubMed  Google Scholar 

  40. Eisenstein L, Debey P, Douzou P (1977) P450cam: oxygenated complexes stabilized at low temperature. Biochem Biophys Res Commun 77:1377–1383

    Article  CAS  PubMed  Google Scholar 

  41. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North-Holland, Amsterdam

    Google Scholar 

  42. Couture M, Stuehr DJ, Rousseau DL (2000) The ferrous dioxygen complex of the oxygenase domain of neuronal nitric-oxide synthase. J Biol Chem 275:3201–3205

    Article  CAS  PubMed  Google Scholar 

  43. Macdonald IDG, Sligar SG, Christian JF, Unno M, Champion PM (1998) Identification of the Fe−O−O bending mode in oxycytochrome P450cam by resonance Raman spectroscopy. J Am Chem Soc 121:376–380

    Article  Google Scholar 

  44. Sono M, Eble KS, Dawson JH, Hager LP (1985) Preparation and properties of ferrous chloroperoxidase complexes with dioxygen, nitric oxide, and an alkyl isocyanide. Spectroscopic dissimilarities between the oxygenated forms of chloroperoxidase and cytochrome P-450. J Biol Chem 260:15530–15535

    CAS  PubMed  Google Scholar 

  45. Bangcharoenpaurpong O, Rizos AK, Champion PM, Jollie D, Sligar SG (1986) Resonance Raman detection of bound dioxygen in cytochrome P-450cam. J Biol Chem 261:8089–8092

    CAS  PubMed  Google Scholar 

  46. Fischer RT, Trzaskos JM, Magolda RL, Ko SS, Brosz CS, Larsen B (1991) Lanosterol 14α-methyl demethylase. Isolation and characterization of the third metabolically generated oxidative demethylation intermediate. J Biol Chem 266:6124–6132

    CAS  PubMed  Google Scholar 

  47. Akhtar M, Corina D, Miller S, Shyadehi AZ, Wright JN (1994) Mechanism of the acyl-carbon cleavage and related reactions catalyzed by multifunctional P-450s: studies on cytochrome P-45017α. Biochemistry 33:4410–4418

    Article  CAS  PubMed  Google Scholar 

  48. Akhtar M, Alexander K, Boar RB, McGhie JF, Barton DH (1978) Chemical and enzymic studies on the characterization of intermediates during the removal of the 14α-methyl group in cholesterol biosynthesis. The use of 32-functionalized lanostane derivatives. Biochem J 169:449–463

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Corina DL, Miller SL, Wright JN, Akhtar M (1991) The mechanism of cytochrome P-450 dependent C-C bond cleavage: studies on 17α-hydroxylase-17,20-lyase. J Chem Soc Chem Commun 782–783

    Google Scholar 

  50. Roberts ES, Vaz AD, Coon MJ (1991) Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: deformylation with olefin formation. Proc Natl Acad Sci U S A 88:8963–8966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Kuo CL, Raner GM, Vaz ADN, Coon MJ (1999) Discrete species of activated oxygen yield different cytochrome P450 heme adducts from aldehydes. Biochemistry 38:10511–10518

    Article  CAS  PubMed  Google Scholar 

  52. Bestervelt LL, Vaz AD, Coon MJ (1995) Inactivation of ethanol-inducible cytochrome P450 and other microsomal P450 isozymes by trans-4-hydroxy-2-nonenal, a major product of membrane lipid peroxidation. Proc Natl Acad Sci U S A 92:3764–3768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Korth HG, Sustmann R, Thater C, Butler AR, Ingold KU (1994) On the mechanism of the nitric oxide synthase-catalyzed conversion of N ω-hydroxy-L-arginine to citrulline and nitric oxide. J Biol Chem 269:17776–17779

    CAS  PubMed  Google Scholar 

  54. Wertz DL, Sisemore MF, Selke M, Driscoll J, Valentine JS (1998) Mimicking cytochrome P-450 2B4 and aromatase: aromatization of a substrate analogue by a peroxo Fe(III) porphyrin complex. J Am Chem Soc 120:5331–5332

    Article  CAS  Google Scholar 

  55. Sisemore MF, Burstyn JN, Valentine JS (1996) Epoxidation of electron-deficient olefins by a nucleophilic iron(III) peroxo porphyrinato complex, peroxo(tetramesitylporphyrinato)ferrate(1−). Angew Chem Int Ed 35:206–208

    Article  CAS  Google Scholar 

  56. Davydov R, Macdonald IDG, Makris TM, Sligar SG, Hoffman BM (1999) EPR and ENDOR of catalytic intermediates in cryoreduced native and mutant oxy-cytochromes P450cam: mutation-induced changes in the proton delivery system. J Am Chem Soc 121:10654–10655

    Article  CAS  Google Scholar 

  57. Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) Hydroxylation of camphor by reduced oxy-cytochrome P450cam: mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. J Am Chem Soc 123:1403–1415

    Article  CAS  PubMed  Google Scholar 

  58. Vaz ADN, McGinnity DF, Coon MJ (1998) Epoxidation of olefins by cytochrome P450: evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Proc Natl Acad Sci U S A 95:3555–3560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Jin S, Makris TM, Bryson TA, Sligar SG, Dawson JH (2003) Epoxidation of olefins by hydroperoxo−ferric cytochrome P450. J Am Chem Soc 125:3406–3407

    Article  CAS  PubMed  Google Scholar 

  60. de Visser SP, Ogliaro F, Harris N, Shaik S (2001) Multi-state epoxidation of ethene by cytochrome P450: a quantum chemical study. J Am Chem Soc 123:3037–3047

    Article  PubMed  Google Scholar 

  61. de Visser SP, Ogliaro F, Sharma PK, Shaik S (2002) What factors affect the regioselectivity of oxidation by cytochrome P450? A DFT study of allylic hydroxylation and double bond epoxidation in a model reaction. J Am Chem Soc 124:11809–11826

    Article  PubMed  Google Scholar 

  62. Ogliaro F, Cohen S, de Visser SP, Shaik S (2000) Medium polarization and hydrogen bonding effects on compound I of cytochrome P450: what kind of a radical is it really? J Am Chem Soc 122:12892–12893

    Article  CAS  Google Scholar 

  63. Ogliaro F, de Visser SP, Cohen S, Sharma PK, Shaik S (2002) Searching for the second oxidant in the catalytic cycle of cytochrome P450: a theoretical investigation of the iron(III)-hydroperoxo species and its epoxidation pathways. J Am Chem Soc 124:2806–2817

    Article  CAS  PubMed  Google Scholar 

  64. de Visser SP, Ogliaro F, Sharma PK, Shaik S (2002) Hydrogen bonding modulates the selectivity of enzymatic oxidation by P450: chameleon oxidant behavior by compound I. Angew Chem Int Ed 41:1947–1951

    Article  Google Scholar 

  65. Volz TJ, Rock DA, Jones JP (2002) Evidence for two different active oxygen species in cytochrome P450 BM3 mediated sulfoxidation and N-dealkylation reactions. J Am Chem Soc 124:9724–9725

    Article  CAS  PubMed  Google Scholar 

  66. Watanabe Y (2001) Alternatives to the oxoferryl porphyrin cation radical as the proposed reactive intermediate of cytochrome P450: two-electron oxidized Fe(III) porphyrin derivatives. J Biol Inorg Chem 6:846–856

    Article  CAS  PubMed  Google Scholar 

  67. Newcomb M, Shen R, Choi SY, Toy PH, Hollenberg PF, Vaz ADN, Coon MJ (2000) Cytochrome P450-catalyzed hydroxylation of mechanistic probes that distinguish between radicals and cations. Evidence for cationic but not for radical intermediates. J Am Chem Soc 122:2677–2686

    Article  CAS  Google Scholar 

  68. Jin S, Bryson T, Dawson J (2004) Hydroperoxoferric heme intermediate as a second electrophilic oxidant in cytochrome P450-catalyzed reactions. J Biol Inorg Chem 9:644–653

    Article  CAS  PubMed  Google Scholar 

  69. Toy PH, Newcomb M, Coon MJ, Vaz ADN (1998) Two distinct electrophilic oxidants effect hydroxylation in cytochrome P-450-catalyzed reactions. J Am Chem Soc 120:9718–9719

    Article  CAS  Google Scholar 

  70. Newcomb M, Le Tadic-Biadatti MH, Chestney DL, Roberts ES, Hollenberg PF (1995) A nonsynchronous concerted mechanism for cytochrome P-450 catalyzed hydroxylation. J Am Chem Soc 117:12085–12091

    Article  CAS  Google Scholar 

  71. Newcomb M, Aebisher D, Shen R, Chandrasena REP, Hollenberg PF, Coon MJ (2003) Kinetic isotope effects implicate two electrophilic oxidants in cytochrome P450-catalyzed hydroxylations. J Am Chem Soc 125:6064–6065

    Article  CAS  PubMed  Google Scholar 

  72. Chandrasena REP, Vatsis KP, Coon MJ, Hollenberg PF, Newcomb M (2003) Hydroxylation by the hydroperoxy-iron species in cytochrome P450 enzymes. J Am Chem Soc 126:115–126

    Article  Google Scholar 

  73. Toy PH, Dhanabalasingam B, Newcomb M, Hanna IH, Hollenberg PF (1997) A substituted hypersensitive radical probe for enzyme-catalyzed hydroxylations: synthesis of racemic and enantiomerically enriched forms and application in a cytochrome P450-catalyzed oxidation. J Org Chem 62:9114–9122

    Article  CAS  Google Scholar 

  74. Ortiz de Montellano PR, Wilks A (2000) Advances in inorganic chemistry. In: Sykes G, Mauk AG (eds) Iron porphyrins, vol 51. Academic, San Diego, pp 359–407

    Google Scholar 

  75. Tenhunen R, Marver H, Pinstone NR, Trager WF, Cooper DY, Schmid R (1972) Enzymic degradation of heme. Oxygenative cleavage requiring cytochrome P-450. Biochemistry 11:1716–1720

    Article  CAS  PubMed  Google Scholar 

  76. Wilks A, Ortiz de Montellano PR (1993) Rat liver heme oxygenase. High level expression of a truncated soluble form and nature of the meso-hydroxylating species. J Biol Chem 268:22357–22362

    CAS  PubMed  Google Scholar 

  77. Wilks A, Torpey J, Ortiz de Montellano PR (1994) Heme oxygenase (HO-1). Evidence for electrophilic oxygen addition to the porphyrin ring in the formation of α-meso-hydroxyheme. J Biol Chem 269:29553–29556

    CAS  PubMed  Google Scholar 

  78. Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid. Structure 3:1367–1378

    Article  CAS  PubMed  Google Scholar 

  79. Groves JT, Wang CCY (2000) Nitric oxide synthase: models and mechanisms. Curr Opin Chem Biol 4:687–695

    Article  CAS  PubMed  Google Scholar 

  80. Makris TM, Schlichting I, Sligar SG (2005) Activation of molecular oxygen by cytochrome P450. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 2nd edn. Plenum Press, New York, pp 149–182

    Chapter  Google Scholar 

  81. Groves JT (2003) The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies. Proc Natl Acad Sci U S A 100:3569–3574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Groves JT, Haushalter RC, Nakamura M, Nemo TE, Evans BJ (1981) High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. J Am Chem Soc 103:2884–2886

    Article  CAS  Google Scholar 

  83. Groves JT, McClusky GA (1976) Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron. J Am Chem Soc 98:859–861

    Article  CAS  Google Scholar 

  84. Groves JT, Watanabe Y (1988) Reactive iron porphyrin derivatives related to the catalytic cycles of cytochrome P-450 and peroxidase. Studies of the mechanism of oxygen activation. J Am Chem Soc 110:8443–8452

    Article  CAS  Google Scholar 

  85. Shapiro S, Piper JU, Caspi E (1982) Steric course of hydroxylation at primary carbon atoms. Biosynthesis of 1-octanol from (1R)- and (1S)-[1-3H, 2H, 1H; 1-14C]octane by rat liver microsomes. J Am Chem Soc 104:2301–2305

    Article  CAS  Google Scholar 

  86. Shaik S, Filatov M, Schröder D, Schwarz H (1998) Electronic structure makes a difference: cytochrome P-450 mediated hydroxylations of hydrocarbons as a two-state reactivity paradigm. Chem Eur J 4:193–199

    Article  CAS  Google Scholar 

  87. Harris N, Cohen S, Filatov M, Ogliaro F, Shaik S (2000) Two-state reactivity in the rebound step of alkane hydroxylation by cytochrome P-450: origins of free radicals with finite lifetimes. Angew Chem Int Ed 39:2003–2007

    Article  CAS  Google Scholar 

  88. Ogliaro F, de Visser SP, Groves JT, Shaik S (2001) Chameleon states: high-valent metal-oxo species of cytochrome P450 and its ruthenium analogue. Angew Chem Int Ed 40:2874–2878

    Article  CAS  Google Scholar 

  89. Ogliaro F, Harris N, Cohen S, Filatov M, de Visser SP, Shaik S (2000) A model “rebound” mechanism of hydroxylation by cytochrome P450: stepwise and effectively concerted pathways, and their reactivity patterns. J Am Chem Soc 122:8977–8989

    Article  CAS  Google Scholar 

  90. Krest CM, Onderko EL, Yosca TH, Calixto JC, Karp RF, Livada J, Rittle J, Green MT (2013) Reactive intermediates in cytochrome P450 catalysis. J Biol Chem 288:17074–17081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Cryle MJ, De Voss JJ (2006) Is the ferric hydroperoxy species responsible for sulfur oxidation in cytochrome P450s? Angew Chem Int Ed 45:8221–8223

    Article  CAS  Google Scholar 

  92. Truan G, Komandla MR, Falck JR, Peterson JA (1999) P450BM-3: absolute configuration of the primary metabolites of palmitic acid. Arch Biochem Biophys 366:192–198

    Article  CAS  PubMed  Google Scholar 

  93. Capdevila JH, Wei S, Helvig C, Falck JR, Belosludtsev Y, Truan G, Graham-Lorence SE, Peterson JA (1996) The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450BM-3. J Biol Chem 271:22663–22671

    Article  CAS  PubMed  Google Scholar 

  94. Wang B, Li C, Cho KB, Nam W, Shaik S (2013) The FeIII(H2O2) complex as a highly efficient oxidant in sulfoxidation reactions: revival of an underrated oxidant in cytochrome P450. J Chem Theory Comput 9:2519–2525

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The NIH (GM-26730) has supported cytochrome P450 research in the Dawson laboratory. We would like to thank Dr. Masanori Sono for pertinent advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Dawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Modi, A.R., Dawson, J.H. (2015). Oxidizing Intermediates in P450 Catalysis: A Case for Multiple Oxidants. In: Hrycay, E., Bandiera, S. (eds) Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology, vol 851. Springer, Cham. https://doi.org/10.1007/978-3-319-16009-2_2

Download citation

Publish with us

Policies and ethics