Skip to main content

Structures of Cytochrome P450 Enzymes

  • Chapter
Cytochrome P450

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poulos, T.L., B.C. Finzel, and A.J. Howard (1987). High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol. 195, 687–700.

    Article  PubMed  CAS  Google Scholar 

  2. Ravichandran, K.G., S.S. Boddupalli, C.A. Hasermann, J.A. Peterson, and J. Deisenhofer (1993). Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science 261, 731–736.

    Article  PubMed  CAS  Google Scholar 

  3. Sundaramoorthy, M., J. Terner, and T.L. Poulos (1995). The crystal structure of chloroperoxidase: A heme peroxidase-cytochrome P450 functional hybrid. Structure 3, 1367–1377.

    Article  PubMed  CAS  Google Scholar 

  4. Crane, B.R., A.S. Arvai, D.K. Ghosh, C. Wu, E.D. Getzoff, D.J. Stuehr et al. (1998). Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279, 2121–2126.

    Article  PubMed  CAS  Google Scholar 

  5. Fischmann, T.O., A. Hruza, X.D. Niu, J.D. Fossetta, C.A. Lunn, E. Dolphin et al. (1999). Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat. Struct. Biol. 6, 233–242.

    Article  PubMed  CAS  Google Scholar 

  6. Raman, C.S., H. Li, P. Martasek, V. Kral, B.S. Masters, and T.L. Poulos (1998). Crystal structure of constitutive endothelial nitric oxide synthase: A paradigm for pterin function involving a novel metal center. Cell 95, 939–950.

    Article  PubMed  CAS  Google Scholar 

  7. Adman, E., K.D. Watenpaugh, and L.H. Jensen (1975). NH-S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein. Proc. Natl. Acad. Sci. USA 72, 4854–4858.

    Article  PubMed  CAS  Google Scholar 

  8. Ueyama, N., T. Terakawa, M. Nakata, and A. Nakamura (1983). Positive shift of redox potential of [Fe2S4(Z-cys-Gly-Ala-OMe)4]2− in dichloromethane. J. Am. Chem. Soc. 105, 7098–7102.

    Article  CAS  Google Scholar 

  9. Ueyama, N., N. Nishikawa, Y. Yamada, T. Okamura, and A. Nakamura (1996). Cytochrome P-450 model (porphinato)(thiolatio)iron(III) complexes with and double NH-S hydrogen bonds. J. Am. Chem. Soc. 118, 1286–1287.

    Article  Google Scholar 

  10. Poulos, T.L. and B.C. Finzel (1984). Heme enzyme structure and function. In M.T. Mearn (ed.), Peptide and Protein Reviews, Vol. 4. Marcel Dekker, New York, pp. 115–171.

    Google Scholar 

  11. Chang, C.K. and T.G. Traylor (1973). Proximal base influence on the binding of oxygen and carbon monoxide to heme. J. Am. Chem. Soc. 95, 8477–8479.

    Article  PubMed  CAS  Google Scholar 

  12. Doef, M.M., D.A. Sweigart, and P. O’Brien (1983). Hydrogen bonding from coordinated imidazole in ferric porphyrin complexes. Effect on the Fe(III)/Fe(II) reduction potential. Inorg. Chem. 22, 851–852.

    Article  Google Scholar 

  13. Nappa, M., J.S. Valentine, and P.A. Snyder (1977). Imidazolate complexes of ferric porphyrins. J. Am. Chem. Soc. 99, 5799–5800.

    Article  PubMed  CAS  Google Scholar 

  14. Valentine, J.S., R.P. Sheridan, L.C. Allen, and P.C. Kahn (1979). Coupling between oxidation state and hydrogen bond conformation in heme proteins. Proc. Nat. Acad. Sci. USA 76, 1009–1013.

    Article  PubMed  CAS  Google Scholar 

  15. Banci, L., I.I. Bertin, E.A. Pease, M. Tien, and P. Turano (1992). 1H NMR investigation of manganese peroxidase from Phanerochaete chrysosporium. A comparison with other peroxidases. Biochemistry 31, 10009–10017.

    Article  PubMed  CAS  Google Scholar 

  16. Vidakovic, M., S.G. Sligar, H. Li, and T.L. Poulos (1998). Understanding the role of the essential Asp251 in cytochrome p450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect. Biochemistry 37, 9211–9219.

    Article  PubMed  CAS  Google Scholar 

  17. Benson, D.E., K.S. Suslick, and S.G. Sligar (1997). Reduced oxy intermediate observed in D251N cytochrome P450cam. Biochemistry 36, 5104–5107.

    Article  PubMed  CAS  Google Scholar 

  18. Schlichting, I., J. Berendzen, K. Chu, A.M. Stock, S.A. Maves, D.E. Benson et al. (2000). The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287, 1615–1622.

    Article  PubMed  CAS  Google Scholar 

  19. Cupp-Vickery, J.R., O. Han, C.R. Hutchinson, and T.L. Poulos (1996). Substrate-assisted cataly-sis in cytochrome P450eryF. Nat. Struc. Biol. 3, 632–637.

    Article  CAS  Google Scholar 

  20. Wright, R.L., K. Harris, B. Solow, R.H. White, and P.J. Kennelly (1996). Cloning of a potential cytochrome P450 from the archaeon Sulfolobus solfataricus. FEBS Lett. 384, 235–239.

    Article  PubMed  CAS  Google Scholar 

  21. McLean, M.A., S.A. Maves, K.E. Weiss, S. Krepich, and S.G. Sligar (1998). Characterization of a cytochrome P450 from the acidothermophilic archaea Sulfolobus solfataricus. Biochem. Biophys. Res. Comm. 252, 166–172.

    Article  PubMed  CAS  Google Scholar 

  22. Yano, J.K., L.S. Koo, D.J. Schuller, H. Li, P.R. Ortiz de Montellano, and T.L. Poulos (2000). Crystal structure of a thermophilic cytochrome P450 from the archaeon Sulfolobus solfataricus. J. Biol. Chem. 275, 31086–31092.

    Article  PubMed  CAS  Google Scholar 

  23. Park, S.Y., K. Yamane, S. Adachi, Y. Shiro, S.A. Maves, K.E. Weiss et al. (2002). Thermophilic Cytochrome P450 (CYP119) from Sulfolobus solfataricus: High resolution structural origin of its thermostability and functional properties. J. Inorg. Biochem. 91, 491–501.

    Article  PubMed  CAS  Google Scholar 

  24. Puchkaev, A.V., L.S. Koo, and P.R. Ortiz de Montellano (2003). Aromatic stacking as a determinant of the thermal stability of CYP119 from Sulfolobus solfataricus. Arch. Biochem. Biophys. 409, 52–58.

    Article  PubMed  CAS  Google Scholar 

  25. Yano, J.K., F. Blasco, H. Li, R.D. Schmid, A. Henne, and T.L. Poulos (2003). Preliminary characterization and crystal structure of a thermostable cytochrome P450 from Thermus thermophilus. J. Biol. Chem. 278, 608–616.

    Article  PubMed  CAS  Google Scholar 

  26. Omura, T. and A. Ito (1991). Biosynthesis and intracellular sorting of mitochondrial forms of cytochrome P450. Meth. Enzymol. 206, 75–81.

    PubMed  CAS  Google Scholar 

  27. Sakaguchi, M. and T. Omura (1993). Topology and biogenesis of microsomal cytochrome P-450s. In K. Ruckpaul and H. Rein (eds.), Medicinal Implications in Cytochrome P-450 Catalyzed Biotransformations. Akademie Verlag, Berlin.

    Google Scholar 

  28. Von Wachenfeldt, C., T.H. Richardson, J. Cosme, and E.F. Johnson (1997). Microsomal P450 2C3 is expressed as a soluble dimer in Escherichia coli following modifications of its N-terminus. Arch. Biochem. Biophys. 339, 107–114.

    Article  Google Scholar 

  29. Cosme, J. and E.F. Johnson (2000). Engineering microsomal cytochrome P450 2C5 to be a soluble, monomeric enzyme. Mutations that alter aggregation, phospholipid dependence of catalysis, and membrane binding. J. Biol. Chem. 28, 2545–2553.

    Article  Google Scholar 

  30. Li, Y.C. and J.Y.L. Chiang (1991). The expression of a catalytically active cholesterol 7alpha-hydroxylase cytochrome P450 in Escherichia coli. J. Biol. Chem. 266, 19186–19191.

    PubMed  CAS  Google Scholar 

  31. Sagara, Y., H.J. Barnes, and M.R. Waterman (1993). Expression in Escherichia coli of functional cytochrome P450c17 lacking its hydrophobic amino-terminal signal anchor. Arch. Biochem. Biophys. 304, 272–278.

    Article  PubMed  CAS  Google Scholar 

  32. Pernecky, S.J., J.R. Larson, R.M. Philpot, and M.J. Coon (1993). Expression of truncated forms of liver microsomal P450 cytochromes 2B4 and 2E1 in Escherichia coli: Influence of NH2-terminal region on localization in cytosol and membranes. Proc. Natl. Acad. Sci. USA [vn90, 2651–2655.

    Google Scholar 

  33. Williams, P.A., J. Cosme, V. Sridhar, E.F. Johnson, and D.E. McRee (2000). The crystallographic structure of a mammalian microsomal cytochrome P450 monooxygenase: Structural adaptations for membrane binding and functional diversity. Mol. Cell 5, 121–132.

    Article  PubMed  CAS  Google Scholar 

  34. De Lemos-Chiarandini, C., A.B. Frey, D.D. Sabatini, and G. Kreibich (1987). Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies. J. Cell Biol. 104, 209–219.

    Article  PubMed  Google Scholar 

  35. Von Wachenfeldt, C. and E.F. Johnson (1995). Structures of eukaryotic cytochrome P450 enzymes. In P.R. Ortiz de Montellano (ed.), Cytochrome P450: Structure, Mechanism, and Biochemistry. Plenum Press, New York.

    Google Scholar 

  36. Ohta, Y., S. Kawato, H. Tagashira, S. Takemori, and S. Kominami (1992). Dynamic structures of adrenocortical cytochrome P-450 in proteoliposomes and microsomes: Protein rotation study. Biochemistry 31, 12680–12687.

    Article  PubMed  CAS  Google Scholar 

  37. Bayburt, T.H. and S.G. Sligar (2002). Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks. Proc. Natl. Acad. Sci. USA 99, 6725–6730.

    Article  PubMed  CAS  Google Scholar 

  38. Shank-Retzlaff, M.L., G.M. Raner, M.J. Coon, and S.G. Sligar (1998). Membrane topology of cytochrome P450 2B4 in langmuir-blodgett monolayers. Arch. Biochem. Biophys. 359, 82–88.

    Article  PubMed  CAS  Google Scholar 

  39. White, S.H., A.S. Ladokhin, S. Jayasinghe, and K. Hristova (2001). How membranes shape protein structure. J. Biol. Chem. 276, 32395–32398.

    Article  PubMed  CAS  Google Scholar 

  40. Bridges, A., L. Gruenke, Y.T. Chang, I.A. Vakser, G. Loew, and L. Waskell (1998). Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 and cytochrome P450 reductase. J. Biol. Chem. 273, 17036–17049.

    Article  PubMed  CAS  Google Scholar 

  41. Wang, M., D.L. Roberts, R. Paschke, T.M. Shea, B.S. Masters, and J.J. Kim (1997). Three-dimensional structure of NADPH-cytochrome P450 reductase: Prototype for FMN-and FAD-containing enzymes. Proc. Natl. Acad. Sci. USA 94, 8411–8416.

    Article  PubMed  CAS  Google Scholar 

  42. Sevrioukova, I.F., H. Li, H. Zhang, J.A. Peterson, and T.L. Poulos (1999). Structure of a cytochrome P450-redox partner electron-transfer complex. Proc. Natl. Acad. Sci. USA 96, 1863–1868.

    Article  PubMed  CAS  Google Scholar 

  43. Gruez, A., D. Pignol, M. Zeghouf, J. Coves, M. Fontecave, J.-L. Ferrer et al. (2000). Four crystal structures of the 60kDa falvoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. J. Mol. Biol. 299, 199–212.

    Article  PubMed  CAS  Google Scholar 

  44. Sevrioukova, I.F., J.T. Hazzard, G. Tollin, and T.L. Poulos (1999). The FMN to heme electron transfer in cytochrome P450BM-3. Effect of chemical modification of cysteines engineered at the FMN-heme domain interaction site. J. Biol. Chem. 274, 36097–36106.

    Article  PubMed  CAS  Google Scholar 

  45. Sevrioukova, I.F., C.E. Immoos, T.L. Poulos, and P. Farmer (2000). Electron transfer in the ruthenated heme domain of cytochrome P450BM-3. Isr. J. Chem. 40, 47–53.

    Article  CAS  Google Scholar 

  46. Sevrioukova, I.F., C. Gracia, H. Li, B. Bhaskar, T.L. Poulos (2003). Crystal structure of putidaredoxin, the [2Fe-2S] component of the P450cam monooxygenase system from Pseudomonas putida. J. Molec. Biol. 333, 377–392.

    Article  PubMed  CAS  Google Scholar 

  47. Sevrioukova, I.F., H. Li, T.L. Poulos (2004). Crystal structure of putidaredoxin reductase from pseudomonas putida, the final structural component of the P450cam monooxygenase system. J. Mol. Biol. 236, 889–902.

    Article  Google Scholar 

  48. Muller, J.J., A. Lapko, G. Bourenkov, K. Ruckpaul, and U. Heinemann (2000). Adrenodoxin reductase-adrenodoxin complex structure suggests electron transfer path in steroid biosynthesis. J. Biol. Chem. 276, 2786–2789.

    Article  PubMed  Google Scholar 

  49. Muller, A., J.J. Muller, Y.A. Muller, H. Uhlmann, R. Bernhardt, and U. Heinemann (1998). New aspects of electron transfer revealed by the crystal structure of a truncated bovine adrenodoxin, Adx(4–108). Structure 6, 269–280.

    Article  PubMed  CAS  Google Scholar 

  50. Ziegler, G.A. and G.E. Schulz (2000). Crystal structures of adrenodoxin reductase in complex with NADP(+) and NADPH suggesting a mechanism for the electron transfer of an enzyme family. Biochemistry 39, 10986–10995.

    Article  PubMed  CAS  Google Scholar 

  51. Mittl, P.R.E. and G.E. Schulz (1994). The structure of glutathione reductase from Escherichia coli at 1.86Å resolution: Comparison with the enzyme from human erythrocytes. Protein Sci. 3, 799–809.

    PubMed  CAS  Google Scholar 

  52. Sevrioukova, I.F. and T.L. Poulos (2002). Putidaredoxin reductase, a new function for an old protein. J. Biol. Chem. 277, 25831–25839.

    Article  PubMed  CAS  Google Scholar 

  53. Aoki, M., K. Ishimori, and I. Morishima (1998). Roles of negatively charged surface residues of putidaredoxin in interactions with redox partners in P450cam monooxygenase system. Biochim. Biophys. Acta 1386, 157–167.

    PubMed  CAS  Google Scholar 

  54. Sevrioukova, I.F., J.T. Hazzard, G. Tollin, and T.L. Poulos (2001). Laser flash induced electron transfer in P450cam monooxygenase: Putidaredoxin reductase-putidaredoxin interaction. Biochemistry 40, 10592–10600.

    Article  PubMed  CAS  Google Scholar 

  55. Pochapsky, T.C., X.M. Ye, G. Ratnaswamy, and T.A. Lyons (1994). An NMR-derived model for the solution structure of oxidized putidaredoxin, a 2-Fe, 2-S ferredoxin from Pseudomonas. Biochemistry 33, 6424–6432.

    Article  PubMed  CAS  Google Scholar 

  56. Nagano, S., H. Li, H. Shimizu, C. Nishida, H. Ogura, P.R. Ortiz de Montellano et al. (2003). Crystal structures of epothilone-D bound, epothilone-B bound, and substrate-free forms of cytochrome P450epoK. J. Biol. Chem. 278, 44886–44893.

    Article  PubMed  CAS  Google Scholar 

  57. Tang, L., S. Shah, L. Chung, J. Carney, L. Kaz, C. Khosla et al. (2000). Cloning and heterologous expression of the epothilone gene cluster. Science 287, 640–642.

    Article  PubMed  CAS  Google Scholar 

  58. Lee, D.-S., A. Yamada, H. Sugimoto, I. Matsunaga, H. Ogura, K. Ichihara et al. (2003). Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. J. Biol. Chem. 278, 9761–9767.

    Article  PubMed  CAS  Google Scholar 

  59. Li, H. and T.L. Poulos (1997). The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat. Struct. Biol. 4, 140–146.

    Article  PubMed  CAS  Google Scholar 

  60. Haines, D.C., D.R. Tomchick, M. Machius, and J.A. Peterson (2001). Pivotal role of water in the mechanism of P450BM-3. Biochemistry 40, 13456–13465.

    Article  PubMed  CAS  Google Scholar 

  61. Modi, S., M.J. Sutcliffe, W.U. Primrose, L.Y. Lian, and G.C. Roberts (1996). The catalytic mechanism of cytochrome P450 BM3 involves a 6 Å movement of the bound substrate on reduction. Nat. Struc. Biol. 3, 414–417.

    Article  CAS  Google Scholar 

  62. Wester, M.R., E.F. Johnson, C. Marques-Soares, S. Dijols, P.M. Dansette, D. Mansuy (2003). The structure of mammalian cytochrome P450 2C5 complexed with diclofenac at 2.1 Å resolution: Evidence for an induced fit model of substrate binding. Biochemistry 42, 9335–9345.

    Article  PubMed  CAS  Google Scholar 

  63. Wester, M.R., E.F. Johnson, C. Marques-Soares, P.M. Dansette, D. Mansuy, and C.D. Stout (2003, submitted). The structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3 Å resolution: Evidence for multiple substrate binding modes. Biochemistry 42, 6370–6379.

    Article  PubMed  CAS  Google Scholar 

  64. Marques-Soares, C., S. Dijols, A. Macherey, M.R. Wester, E.F. Johnson, P.M. Dansette et al. (2003, submitted). Sulfaphenazole derivatives as tools for comparing cytochrome P450 2C5 and human cytochrome P450 2Cs: Identification of a new high affinity substrate common to those enzymes. Biochemistry 42, 6363–6369.

    Article  PubMed  CAS  Google Scholar 

  65. Poulos, T.L., B.C. Finzel, and A.J. Howard (1986). Crystal structure of substrate-free Pseudomonas putida cytochrome P450. Biochemistry 25, 5314–5322.

    Article  PubMed  CAS  Google Scholar 

  66. DiGleria, K., D.P. Nickerson, H.A.O. Hill, L.L. Wong, and V. Fulop (1998). Covalent attachment of an electroactive sulfhydryl reagent in the active site of cytochrome P450cam as revealed by the crystal structure on the modified protein. J. Am. Chem. Soc. 120, 46–52.

    Article  CAS  Google Scholar 

  67. Dmochowski, I.J., B.R. Crane, J.J. Wilker, J.R. Winkler, and H.B. Gray (1999). Optical detection of cytochrome P450 by sensitizer-linked substrates. Proc. Natl. Acad. Sci. USA 9, 12987–12990.

    Article  Google Scholar 

  68. Dunn, A.R., A.M. Hays, D.B. Goodin, C.D. Stout, R. Chiu, J.R. Winkler et al. (2002). Fluorescent probes for cytochrome P450 structural characterization and inhibitor screening. J. Am. Chem. Soc. 124, 10254–10255.

    Article  PubMed  CAS  Google Scholar 

  69. Li, H. and T.L. Poulos (1995). Modeling protein substrate interactions in the heme domain of cytochrome P450BM-3. Acta Crystallogr. D 51, 21–32.

    Article  PubMed  CAS  Google Scholar 

  70. Paulsen, M.D. and R.L. Ornstein (1995). Dramatic differences in the motions of the mouth of open and closed cytochrome P450BM-3 by molecular dynamics simulations. Proteins 21, 237–243.

    Article  PubMed  CAS  Google Scholar 

  71. Park, S.Y., H. Shimizu, S. Adachi, A. Nakagawa, I. Tanaka, K. Nakahara et al. (1997). Crystal structure of nitric oxide reductase from denitryfying fungus Fusarium oxysporum. Nat. Struc. Biol. 4, 827–832.

    Article  CAS  Google Scholar 

  72. Zerbe, K., O. Pylypenko, F. Vitali, W. Zhang, S. Rouset, M. Heck et al. (2002). Crystal structure of OxyB, a cytochrome P450 implicated in an oxidative phenol coupling reaction during vancomycin biosynthesis. J. Biol. Chem. 277, 47476–47485.

    Article  PubMed  CAS  Google Scholar 

  73. Podust, L., Y. Kim, M. Arase, B. Neely, B. Beck, H. Bach et al. (2003). The 1.92 A structure of Streptomyces coelicolor A3 (2) Cyp154C1: A new monooxygenase that functionalizes macrolide ring systems. J. Biol. Chem. 278, 12214–12221.

    Article  PubMed  CAS  Google Scholar 

  74. Podust, L.M., T.L. Poulos, and M.R. Waterman (2001). Crystal structure of cytochrome P450 14alpha-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA 98, 3068–3073.

    Article  PubMed  CAS  Google Scholar 

  75. Scott, E.E., Y.A. He, M.R. Wester, M.A. White, C.C. Chin, J.R. Halpert, E.F. Johnson, and D. Stout (2003). An open confirmation of mammalian cytochrome P450 2B4 at 1.6Å resolution. Proc. Natl. Acad. Sci. USA 100, 13196–13201.

    Article  PubMed  CAS  Google Scholar 

  76. Winn, P.J., S.K. Ldemann, R. Gauges, V. Lounnas, and R.C. Wade (2002). Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine. Proc. Natl. Acad. Sci. USA 99, 5361–5366.

    Article  PubMed  CAS  Google Scholar 

  77. Pochapsky, T., T.A. Lyons, S. Kazanis, T. Arakaki, and G. Ratnaswamy (1996). A structure-based model for cytochrome P450cam-putidaredoxin interactions. Biochimie 78, 723–733.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Poulos, T.L., Johnson, E.F. (2005). Structures of Cytochrome P450 Enzymes. In: Ortiz de Montellano, P.R. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/0-387-27447-2_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-27447-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48324-0

  • Online ISBN: 978-0-387-27447-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics