Skip to main content

Toxicity of Nanomaterials to Plants

  • Chapter
  • First Online:
Nanotechnology and Plant Sciences

Abstract

Nanoparticles have many potential applications, especially in biomedical engineering and agriculture, but the toxicity of nanoparticles to plants has received little attention. Previously, we described an increase in the levels of reactive oxygen species (ROS) in rice (Oryza sativa) and Arabidopsis thaliana cells after nanoparticle treatments. We found that ROS resulted in programmed cell death and that the nanoparticles caused a dosage-dependent increase in cell death. Since then, accumulating data have indicated that nanomaterials cause toxicity in diverse organisms. Data from our lab and others indicate that we should critically examine the risks of nanoparticles, so that we can safely take advantage of the tremendous potential benefits of this new technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alimohammadi M, Xu Y, Wang DY, Biris AS, Khodakovskaya MV (2011) Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology 22(29). Artn 295101 doi: 10.1088/0957-4484/22/29/295101

  • Al-Salim N, Barraclough E, Burgess E, Clothier B, Deurer M, Green S, Malone L, Weir G (2011) Quantum dot transport in soil, plants, and insects. Sci Total Environ 409(17):3237–3248. doi:10.1016/j.scitotenv.2011.05.017

    Article  CAS  PubMed  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827. doi:10.1021/es202660k

    Article  CAS  PubMed  Google Scholar 

  • Avanasi R, Jackson WA, Sherwin B, Mudge JF, Anderson TA (2014) C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol 48(5):2792–2797. doi:10.1021/es405306w

    Article  CAS  PubMed  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell Environ 32(5):577–584. doi:10.1111/j.1365-3040.2009.01952.x

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222. doi:10.1016/j.jhazmat.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  • Boghossian AA, Ham MH, Choi JH, Strano MS (2011) Biomimetic strategies for solar energy conversion: a technical perspective. Energ Environ Sci 4(10):3834–3843. doi:10.1039/C1ee01363g

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016. doi:10.1126/science.281.5385.2013

    Article  CAS  PubMed  Google Scholar 

  • Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem SETAC 27(9):1922–1931. doi:10.1897/08-117.1 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205(4411):1144–1147. doi:10.1126/science.205.4411.1144

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, Hudson JS, Ke PC (2010) Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6(5):612–617. doi:10.1002/smll.200901911

    Article  CAS  PubMed  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang C, Ma X, White JC (2012) Fullerene-enhanced accumulation of p, p’-DDE in agricultural crop species. Environ Sci Technol 46(17):9315–9323. doi:10.1021/es301982w

    Article  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589. doi:10.1016/j.tplants.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49. doi:10.1002/tox.20610

    Article  CAS  PubMed  Google Scholar 

  • Elumalai EK, Vinothkumar P (2013) Role of silver nanoparticle against plant pathogens. Nano Biomed Eng 5(2). doi:10.5101/nbe.v5i2.p90-93

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250:318–332. doi:10.1016/j.jhazmat.2013.01.063

  • Fan R, Huang YC, Grusak MA, Huang CP, Sherrier DJ (2014) Effects of nano-TiO(2) on the agronomically-relevant Rhizobium-legume symbiosis. Sci Total Environ 466–467:503–512. doi:10.1016/j.scitotenv.2013.07.032

  • Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47(16):9496–9504. doi:10.1021/es402109n

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7(3):323–337. doi:10.3109/17435390.2012.658094

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408. doi:10.1038/nmat3890

    Article  CAS  PubMed  Google Scholar 

  • Ham MH, Choi JH, Boghossian AA, Jeng ES, Graff RA, Heller DA, Chang AC, Mattis A, Bayburt TH, Grinkova YV, Zeiger AS, Van Vliet KJ, Hobbie EK, Sligar SG, Wraight CA, Strano MS (2010) Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat Chem 2(11):929–936. doi:10.1038/nchem.822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169. doi:10.1021/Nl048715d

  • Huang P, Ju HW, Min JH, Zhang X, Chung JS, Cheong HS, Kim CS (2012) Molecular and physiological characterization of the Arabidopsis thaliana Oxidation-related Zinc Finger 2, a plasma membrane protein involved in ABA and salt stress response through the ABI2-mediated signaling pathway. Plant Cell Physiol 53(1):193–203. doi:10.1093/pcp/pcr162

  • Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47(18):10637–10644. doi:10.1021/es402209w

    CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108(3):1028–1033. doi:10.1073/pnas.1008856108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135. doi:10.1021/nn204643g

    Article  CAS  PubMed  Google Scholar 

  • Klimov VI (2007) Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu Rev Phys Chem 58:635–673. doi:10.1146/annurev.physchem.58.032806.104537

    Article  CAS  PubMed  Google Scholar 

  • Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228. doi:10.1016/j.envpol.2012.11.026

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407(19):5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10(7):2296–2302. doi:10.1021/nl903518f

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62. doi:10.1016/j.jhazmat.2012.08.059

    Article  PubMed  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem/SETAC 27(9):1915–1921

    Article  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675. doi:10.1002/Etc.58

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79. doi:10.1007/s12011-007-8028-0

  • Lenaghan SC, Li YY, Zhang H, Burris JN, Stewart CN, Parker LE, Zhang MJ (2013) Monitoring the environmental impact of TiO2 nanoparticles using a plant-based sensor network. IEEE Trans Nanotechnol 12(2):182–189. doi:10.1109/Tnano.2013.2242089

  • Lin C, Fugetsu B, Su Y, Watari F (2009a) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170(2–3):578–583

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009b) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132. doi:10.1002/smll.200801556

    CAS  PubMed  Google Scholar 

  • Lin DH, Ji J, Long ZF, Yang K, Wu FC (2012) The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res 46(14):4477–4487. doi:10.1016/j.watres.2012.05.035

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250. doi:10.1016/j.envpol.2007.01.016

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Google Scholar 

  • Liu QL, Chen B, Wang QL, Shi XL, Xiao ZY, Lin JX, Fang XH (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhao Y, Wan Y, Zheng J, Zhang X, Wang C, Fang X, Lin J (2010) Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4(10):5743–5748. doi:10.1021/nn101430g

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) X-ray Absorption Spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693. doi:10.1021/Jf904472e

  • Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci: Off J Soc Toxicol 120(Suppl 1):S109–S129. doi:10.1093/toxsci/kfq372

    Article  CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana(L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chemistry & Engineering:130610093747005. doi:10.1021/sc400098h

  • Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR, Gardea-Torresdey JL (2013) Toxicity assessment of cerium oxide nanoparticles in Cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61(26):6224–6230. doi:10.1021/Jf401628v

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517. doi:10.1002/tox.20667

  • Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21(6):2057–2068. doi:10.1007/s10895-011-0904-5

    Article  CAS  PubMed  Google Scholar 

  • Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211–212:427–435. doi:10.1016/j.jhazmat.2011.12.012

    Article  PubMed  Google Scholar 

  • Oberdorster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105. doi:10.1111/j.1365-2796.2009.02187.x

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2007) Concepts of nanoparticle dose metric and response metric. Environ Health Perspect 115(6):A290

    Article  PubMed Central  PubMed  Google Scholar 

  • Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85. doi:10.1016/j.ecoenv.2011.11.012

    Article  CAS  PubMed  Google Scholar 

  • Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227. doi:10.1016/j.envpol.2013.10.027

    Article  CAS  PubMed  Google Scholar 

  • Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11. doi:10.1016/j.envexpbot.2013.03.002

    Article  CAS  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332. doi:10.1016/j.scitotenv.2013.02.059

    Article  PubMed  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498. doi:10.1021/jf104517j

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360. doi:10.3109/17435390.2011.579631

    Article  CAS  PubMed  Google Scholar 

  • Schwabe F, Schulin R, Limbach LK, Stark W, Burge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91(4):512–520. doi:10.1016/j.chemosphere.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y (2011a) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5(1):493–499. doi:10.1021/nn102344t

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Kaji N, Venturelli E, Okamoto Y, Terasaka K, Tokeshi M, Mizukami H, Braeckmans K, Bianco A, Baba Y (2011b) Functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5(11):9264–9270. doi:10.1021/Nn2035654

    Article  CAS  PubMed  Google Scholar 

  • Shah V, Belozerova I (2008) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1–4):143–148. doi:10.1007/s11270-008-9797-6

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50. doi:10.1016/j.tplants.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915. doi:10.1016/j.chemosphere.2013.05.044

  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97(10):1602–1609. doi:10.3732/ajb.1000073

    Article  CAS  PubMed  Google Scholar 

  • Shi X, von dem Bussche A, Hurt RH, Kane AB, Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6(11):714–719. doi:10.1038/nnano.2011.151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48(9):669–675

    Article  CAS  PubMed  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254. doi:10.1021/es300949f

    CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Tech 43(24):9473–9479. doi:10.1021/es901695c

  • Tan X-m, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47(15):3479–3487. doi:10.1016/j.carbon.2009.08.018

  • Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci-Process Impacts 15(10):1830–1843. doi:10.1039/C3em00235g

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176–1181. doi:10.1039/c0nr00722f

    Article  CAS  PubMed  Google Scholar 

  • Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7(1):480. doi:10.1186/1556-276X-7-480

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449. doi:10.1021/Es4004334

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Kurepa J, Smalle JA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant, Cell Environ 34(5):811–820. doi:10.1111/j.1365-3040.2011.02284.x

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88. doi:10.1007/s12011-007-0046-4

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxic Lett 158(2):122–132. doi:10.1016/j.toxlet.2005.03.003

  • Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143(2):1131–1141. doi:10.1007/s12011-010-8901-0

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, KE., Chang, ZY., Shen, CX., Yao, N. (2015). Toxicity of Nanomaterials to Plants. In: Siddiqui, M., Al-Whaibi, M., Mohammad, F. (eds) Nanotechnology and Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_6

Download citation

Publish with us

Policies and ethics