Skip to main content

Physiological and Molecular Mechanism of Nanoparticles Induced Tolerance in Plants

  • Chapter
  • First Online:
Emerging Contaminants and Plants

Abstract

Nanoparticles are emerging plant contaminants applied through soil or foliarly to deliver plant nutrients to the plants for growth development and stress tolerance. Nanoparticles capable of entering into plant cells and leaves can transport nutrients into different parts of the plant. Nanoparticles contain magic bullets such as nano-fertilizer and nano-pesticides. Naturally occurring nanoparticles are found in volcanic ash and ocean biological matter such as viruses and dust. The prime application of nanotechnology is to increase crop production with minimum losses and to activate plant defense mechanism against pests, insects and other environmental challenges. In this chapter we will discuss nanoparticles, their fate in plants, and their role in physiological and molecular stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas, Q., Yousaf, B., Ali, M. U., Munir, M. A. M., El-Naggar, A., Rinklebe, J., & Naushad, M. (2020). Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International, 138, 105646.

    Article  CAS  Google Scholar 

  • Ahmed, M. Z., Gul, B., Khan, M. A., & Watanabe, K. N. (2016). Characterization and function of sodium exchanger genes in Aeluropus lagopoides under NaCl stress. In Halophytes for food security in dry lands (pp. 1–16). Academic Press.

    Google Scholar 

  • Ali, E. F., El-Shehawi, A. M., Ibrahim, O. H. M., Abdul-Hafeez, E. Y., Moussa, M. M., & Hassan, F. A. S. (2021). A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry, 161, 166–175.

    Article  CAS  Google Scholar 

  • Ali, S., Hayat, K., Iqbal, A., & Xie, L. (2020). Implications of abscisic acid in the drought stress tolerance of plants. Agronomy, 10(9), 1323.

    Article  CAS  Google Scholar 

  • Bryant, C., Fuenzalida, T. I., Brothers, N., Mencuccini, M., Sack, L., Binks, O., & Ball, M. C. (2021). Shifting access to pools of shoot water sustains gas exchange and increases stem hydraulic safety during seasonal atmospheric drought. Plant, Cell & Environment, 44(9), 2898–2911.

    Article  CAS  Google Scholar 

  • Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., & Landry, M. P. (2018). Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology, 36(9), 882–897.

    Article  CAS  Google Scholar 

  • de la Rosa, G., García-Castañeda, C., Vázquez-Núñez, E., Alonso-Castro, Á. J., Basurto-Islas, G., Mendoza, Á., et al. (2017). Physiological and biochemical response of plants to engineered NMs: Implications on future design. Plant Physiology and Biochemistry, 110, 226–235.

    Article  Google Scholar 

  • Dimkpa, C. O. (2018). Soil properties influence the response of terrestrial plants to metallic nanoparticles exposure. Current Opinion in Environmental Science & Health, 6, 1–8.

    Article  Google Scholar 

  • Farouk, S., & Al-Amri, S. M. (2019). Exogenous zinc forms counteract NaCl-induced damage by regulating the antioxidant system, osmotic adjustment substances, and ions in canola (Brassica napus L. cv. Pactol) plants. Journal of Soil Science and Plant Nutrition, 19(4), 887–899.

    Article  CAS  Google Scholar 

  • Feng, Y., Cui, X., He, S., Dong, G., Chen, M., Wang, J., & Lin, X. (2013). The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environmental Science & Technology, 47(16), 9496–9504.

    Article  CAS  Google Scholar 

  • Fischer, G., Hizsnyik, E., Prieler, S., van Velthuizen, H., & Wiberg, D. (2012). Scarcity and abundance of land resources: Competing uses and the shrinking land resource base. FAO.

    Google Scholar 

  • Gilliham, M., Able, J. A., & Roy, S. J. (2017). Translating knowledge about abiotic stress tolerance to breeding programmes. The Plant Journal, 90(5), 898–917.

    Article  CAS  Google Scholar 

  • Guerrero, J. J. G., Songkumarn, P., Dalisay, T. U., Pangga, I. B., & Organo, N. D. (2020). Toxicity of CuO and ZnO nanoparticles and their bulk counterparts on selected soil-borne fungi. Agriculture and Natural Resources, 54(3), 325–332.

    Google Scholar 

  • Ibrahimova, U., Kumari, P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z., et al. (2021). Progress in understanding salt stress response in plants using biotechnological tools. Journal of Biotechnology, 329, 180–191.

    Article  CAS  Google Scholar 

  • Jaberzadeh, A., Moaveni, P., Moghadam, H. R. T., & Zahedi, H. (2013). Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae botanicae horti agrobotanici cluj-napoca, 41(1), 201–207.

    Article  CAS  Google Scholar 

  • Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30(5), 435–458.

    Article  Google Scholar 

  • Javed, Z., Dashora, K., Mishra, M., Fasake, V. D., & Srivastva, A. (2019). Effect of accumulation of nanoparticles in soil health-a concern on future. Frontiers in Nanoscience and Nanotechnology, 5, 1–9.

    Article  Google Scholar 

  • Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10(16), 5692.

    Article  CAS  Google Scholar 

  • Khan, N., & Bano, A. (2018). Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil. International Journal of Phytoremediation, 20(5), 405–414.

    Article  CAS  Google Scholar 

  • Khan, N., & Bano, A. (2019). Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS One, 14(9), e0222302.

    Article  CAS  Google Scholar 

  • Laware, S. L., & Raskar, S. (2014). Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. International Journal of Current Microbiology Science, 3(7), 874–881.

    CAS  Google Scholar 

  • Lin, D., Tian, X., Wu, F., & Xing, B. (2010). Fate and transport of engineered nanomaterials in the environment. Journal of Environmental Quality, 39(6), 1896–1908.

    Article  Google Scholar 

  • Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano, 6(1), 41–59.

    CAS  Google Scholar 

  • Lv, J., Zhang, S., Luo, L., Han, W., Zhang, J., Yang, K., & Christie, P. (2012). Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environmental Science & Technology, 46(13), 7215–7221.

    Article  CAS  Google Scholar 

  • Mohamed, A. K. S., Qayyum, M. F., Abdel-Hadi, A. M., Rehman, R. A., Ali, S., & Rizwan, M. (2017). Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science, 63(12), 1736–1747.

    Article  CAS  Google Scholar 

  • Molleman, B., & Hiemstra, T. (2017). Time, pH, and size dependency of silver nanoparticle dissolution: The road to equilibrium. Environmental Science: Nano, 4(6), 1314–1327.

    CAS  Google Scholar 

  • Pandey, K., Anas, M., Hicks, V. K., Green, M. J., & Khodakovskaya, M. V. (2019). Improvement of commercially valuable traits of industrial crops by application of carbon-based nanomaterials. Scientific Reports, 9(1), 1–14.

    Article  Google Scholar 

  • Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8(6), 151.

    Article  Google Scholar 

  • Perlikowski, D., & Kosmala, A. (2020). Mechanisms of drought resistance in introgression forms of Lolium multiflorum/Festuca arundinacea. In Festulolium: From the nature to modern breeding (p. 146). Palacký University Olomouc.

    Google Scholar 

  • Qian, X., Ma, J., Weng, L., Chen, Y., Ren, Z., & Li, Y. (2020). Influence of agricultural organic inputs and their aging on the transport of ferrihydrite nanoparticles: From enhancement to inhibition. Science of the Total Environment, 719, 137440.

    Article  CAS  Google Scholar 

  • Silveira, N. M., Seabra, A. B., Marcos, F. C., Pelegrino, M. T., Machado, E. C., & Ribeiro, R. V. (2019). Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide, 84, 38–44.

    Article  CAS  Google Scholar 

  • Singh, A., Kumar, A., Yadav, S., & Singh, I. K. (2019). Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene, 18, 100173.

    Article  CAS  Google Scholar 

  • Singh, S., Vishwakarma, K., Singh, S., Sharma, S., Dubey, N. K., Singh, V. K., et al. (2017). Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: A concentric overview. Plant Gene, 11, 265–272.

    Article  CAS  Google Scholar 

  • Thiry, A. A., Chavez Dulanto, P. N., Reynolds, M. P., & Davies, W. J. (2016). How can we improve crop genotypes to increase stress resilience and productivity in a future climate? A new crop screening method based on productivity and resistance to abiotic stress. Journal of Experimental Botany, 67(19), 5593–5603.

    Article  CAS  Google Scholar 

  • Tiwari, D. K., Dasgupta-Schubert, N., Villaseñor Cendejas, L. M., Villegas, J., Carreto Montoya, L., & Borjas García, S. E. (2014). Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience, 4(5), 577–591.

    Article  CAS  Google Scholar 

  • Torabian, S., Farhangi-Abriz, S., & Zahedi, M. (2018). Efficacy of FeSO4 nano formulations on osmolytes and antioxidative enzymes of sunflower under salt stress. Indian Journal of Plant Physiology, 23(2), 305–315.

    Article  CAS  Google Scholar 

  • Tourinho, P. S., Van Gestel, C. A., Lofts, S., Svendsen, C., Soares, A. M., & Loureiro, S. (2012). Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environmental Toxicology and Chemistry, 31(8), 1679–1692.

    Article  CAS  Google Scholar 

  • Uddling, J., Broberg, M. C., Feng, Z., & Pleijel, H. (2018). Crop quality under rising atmospheric CO2. Current Opinion in Plant Biology, 45, 262–267.

    Article  CAS  Google Scholar 

  • Wan, J., Wang, R., Bai, H., Wang, Y., & Xu, J. (2020). Comparative physiological and metabolomics analysis reveals that single-walled carbon nanohorns and ZnO nanoparticles affect salt tolerance in Sophora alopecuroides. Environmental Science: Nano, 7(10), 2968–2981.

    CAS  Google Scholar 

  • Wani, S. H., Kumar, V., Shriram, V., & Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4(3), 162–176.

    Article  Google Scholar 

  • Ze, Y., Liu, C., Wang, L., Hong, M., & Hong, F. (2011). The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biological Trace Element Research, 143(2), 1131–1141.

    Google Scholar 

  • Zhang, C. L., Jiang, H. S., Gu, S. P., Zhou, X. H., Lu, Z. W., Kang, X. H., et al. (2019). Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. Environmental Pollution, 252, 1539–1549.

    Article  CAS  Google Scholar 

  • Zhang, Z., Ali, S., Zhang, T., Wang, W., & Xie, L. (2020). Identification, evolutionary and expression analysis of PYL-PP2C-SnRK2s gene families in soybean. Plants, 9(10), 1356.

    Article  CAS  Google Scholar 

  • Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1), 100017.

    Google Scholar 

  • Zhao, G., Zhao, Y., Lou, W., Su, J., Wei, S., Yang, X., et al. (2019). Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale, 11(21), 10511–10523.

    Article  CAS  Google Scholar 

  • Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289, 110270.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Ul-Allah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azeem, A., Abbas, N., Azeem, S., Iqbal, Z., Ul-Allah, S. (2023). Physiological and Molecular Mechanism of Nanoparticles Induced Tolerance in Plants. In: Aftab, T. (eds) Emerging Contaminants and Plants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-22269-6_9

Download citation

Publish with us

Policies and ethics