Skip to main content

Engineering of Extremophilic Phosphotriesterase-Like Lactonases for Biotechnological Applications

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB,volume 1))

Abstract

Organophosphate compounds, as most pesticides and chemical warfare agents, first appeared in the US after 1930s and became widespread after World War II. At present, enzymatic detoxification of organophosphate compounds represents an important issue worldwide, due to their permanent and excessive use that has led in many places to the contamination of soil and water. In the last years our research group focused the attention on the enzymes belonging to amidohydrolase superfamily. In particular, a new family of lactonases with promiscuous phosphotriesterase activity, dubbed PTE-like Lactonases (PLLs), has been discovered. We report here an overview of the actual use of organophosphate compounds and the hydrolytic enzymes able to degrade them. In the PLL family there are enzymes that hydrolyze pesticides, show high thermal resistance and, therefore, are very attractive from a biotechnology point of view. The combination of different in vitro evolution methods represents a successful approach to increase their promiscuous phosphotriesterase activity in order to obtain efficient detoxification enzymatic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aardema H, Meertens JH, Ligtenberg JJ, Peters-Polman OM, Tulleken JE, Zijlstra JG (2008) Organophosphorus pesticide poisoning: cases and developments. Neth J Med 66(4):149–153

    CAS  PubMed  Google Scholar 

  • Afriat L, Roodveldt C, Manco G, Tawfik DS (2006) The latent promiscuity of newly identified microbial lactonase is linked to a recently diverged phosphotriesterase. Biochemistry 45:13677–13686

    Article  CAS  PubMed  Google Scholar 

  • Afriat-Jurnou L, Jackson CJ, Tawfik DS (2012) Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 51:6047–6055

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Gaidukov L, Yagur S, Toker L, Silman I, Tawfik DS (2004) Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proc Natl Acad Sci USA 101(2):482–487

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Gaidukov L, Khersonsky O, Mc QGS, Roodveldt C, Tawfik DS (2005) The ‘evolvability’ of promiscuous protein functions. Nat Genet 37:73–76

    CAS  PubMed  Google Scholar 

  • Amara N, Krom BP, Kaufmann GF, Meijler MM (2011) Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem Rev 111:195–208

    Article  CAS  PubMed  Google Scholar 

  • Amitai G, Gaidukov L, Adani R, Yishay S, Yacov G, Kushnir M et al (2006) Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase. FEBS J 273(9):1906–1919

    Article  CAS  PubMed  Google Scholar 

  • Belinskaya T, Pattabiraman N, diTargiani R, Choi M, Saxena A (2012) Differences in amino acid residues in the binding pockets dictate substrate specificities of mouse senescence marker protein-30, human paraoxonase1, and squid diisopropylfluorophosphatase. Biochim Biophys Acta 1824(5):701–710

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Kuo JM, Raushel FM, Holden HM (1994) Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents. Biochemistry 33:15001–15007

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Kuo JM, Raushel FM, Holden HM (1995) Three-dimensional structure of the binuclear metal center of phosphotriesterase. Biochemistry 34:7973–7983

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Hong SB, Raushel FM, Holden HM (2000) The binding of substrate analogs to phosphotriesterase. J Biol Chem 275:30556–30560

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Shim H, Raushel FM, Holden HM (2001) High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry 40:2712–2722

    Article  CAS  PubMed  Google Scholar 

  • Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci USA 103(15):5869–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum MM, Löhr F, Richardt A, Rüterjans H, Chen JC (2006) Binding of a designed substrate analogue to diisopropyl fluorophosphatase: implication for the phosphotriesterase mechanism. J Am Chem Soc 128:12750–12757

    Article  CAS  PubMed  Google Scholar 

  • Braatz JA (1994) Biocompatible polyurethane-based hydrogels. J Biomater Appl 9:71–96

    Article  CAS  PubMed  Google Scholar 

  • Buchbinder JL, Stephenson RC, Dresser MJ, Pitera JW, Scanlan TS, Fletterick RJ (1998) Biochemical characterization and crystallographic structure of an Escherichia coli protein from the phosphotriesterase gene family. Biochemistry 37:5096–5106

    Article  CAS  PubMed  Google Scholar 

  • Bzdrenga J, Hiblot J, Gotthard G, Champion C, Elias M, Chabriere E (2014) SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase. BMC Res Notes 7:333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cáceres T, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2010) Fenamiphos and related organophosphorus pesticides: environmental fate and toxicology. Rev Environ Contam Toxicol 205:117–162

    PubMed  Google Scholar 

  • Caldwell SR, Raushel FM (1991) Detoxification of organophosphate pesticides using a nylon based immobilized phosphotriesterase from Pseudomonas diminuta. Appl Biochem Biotechnol 31:59–63

    Article  CAS  PubMed  Google Scholar 

  • Caldwell SR, Newcomb JR, Schlecht KA, Raushel FM (1991) Limit of diffusion in the hydrolysis of substrate by the phosphotriesterase from Pseudomonas diminuta. Biochemistry 30:7438–7444

    Article  CAS  PubMed  Google Scholar 

  • Calvert GM, Karnik J, Mehler L, Beckman J, Morrissey B, Sievert J, Barrett R, Lackovic M, Mabee L, Schwartz A, Mitchell Y, Moraga-McHaley S (2008) Acute pesticide poisoning among agricultural workers in the United States, 1998–2005. Am J Ind Med 51(12):883–898

    Article  PubMed  Google Scholar 

  • Can A (2014) Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides. Toxicol Lett 230(3):434–443

    Article  CAS  PubMed  Google Scholar 

  • Carey JL, Dunn C, Gaspari RJ (2013) Central respiratory failure during acute organophosphate poisoning. Respir Physiol Neurobiol 189(2):403–410

    Article  CAS  PubMed  Google Scholar 

  • Carullo P, Cetrangolo GP, Mandrich L, Manco G, Febbraio F (2015) Fluorescence spectroscopy approaches for the development of a real-time organophosphate detection system using an enzymatic sensor. Sensors (Basel) 15(2):3932–3951

    Article  CAS  Google Scholar 

  • Cheng TC, DeFrank JJ (2000) Hydrolysis of organophosphorus compounds by bacterial prolidases. In: Zwanenburg B, Mikolajczyk M, Kielbasinski P (eds) Enzymes in action: green solutions for chemical problems, vol 33. Kluwer, Dordrecht, pp 243–262

    Chapter  Google Scholar 

  • Chen-Goodspeed M, Sogorb MA, Wu F, Hong SB, Raushel FM (2001a) Structural determinants of the substrate and stereochemical specificity of phosphotriesterase. Biochemistry 40(5):1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Chen-Goodspeed M, Sogorb MA, Wu F, Raushel FM (2001b) Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues. Biochemistry 40(5):1332–1339

    Article  CAS  PubMed  Google Scholar 

  • Cho CMH, Mulchandani A, Chen W (2002) Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl Environ Microbiol 68(4):2026–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho CMH, Mulchandani A, Chen W (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol 70(8):4681–4685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho CMH, Mulchandani A, Chen W (2006) Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides. Protein Eng Des Sel 19(3):99–105

    Article  Google Scholar 

  • Chow JY, Wu L, Yew WS (2009) Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily. Biochemistry 48:4344–4353

    Article  CAS  PubMed  Google Scholar 

  • Chow JY, Xue B, Lee KH, Tung A, Wu L, Robinson RC, Yew WS (2010) Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily. J Biol Chem 285(52):40911–40920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb RE, Si T, Zhao H (2012) Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Bio 16:285–291

    Article  CAS  Google Scholar 

  • Cobb RE, Chao R, Zhao H (2013a) Directed evolution: past, present, and future. AIChE J 59:1432–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb RE, Sun N, Zhao H (2013b) Directed evolution as a powerful synthetic biology tool. Methods 60:81–90

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Cui ZL, Li SP, Fu GP (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925

    Article  CAS  Google Scholar 

  • Denard CA, Ren H, Zhao H (2015) Improving and repurposing biocatalysts via directed evolution. Curr Opin Chem Biol 25:55–64

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS (2010) Quorum sensing and bacterial biofilms. Nat Prod Rep 27(3):343–69

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF et al (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    Article  CAS  PubMed  Google Scholar 

  • Dong YJ, Bartlam M, Sun L, Zhou YF, Zhang ZP, Zhang CG et al (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663

    Article  CAS  PubMed  Google Scholar 

  • Draganov DI (2010) Lactonases with organophosphatase activity: structural and evolutionary perspectives. Chem Biol Interact 187(1):370–372

    Article  CAS  PubMed  Google Scholar 

  • Dumas DP, Caldwell SR, Wild JR, Raushel FM (1989a) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264(33):19659–19665

    CAS  PubMed  Google Scholar 

  • Dumas DP, Wild JR, Raushel FM (1989b) Diisopropylfluorophosphate hydrolysis by a phosphotriesterase from Pseudomonas diminuta. Biotechnol Appl Biochem 11:235–243

    CAS  Google Scholar 

  • Eddleston M, Eyer P, Worek F, Mohamed F, Senarathna L, von Meyer L, Juszczak E, Hittarage A, Azhar S, Dissanayake W, Sheriff MH, Szinicz L, Dawson AH, Buckley NA (2005) Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study. Lancet 366(9495):1452–1459

    Article  CAS  PubMed  Google Scholar 

  • Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S, Rochu D, Lecomte C, Rossi M, Masson P, Manco G, Chabriere E (2008) Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 379:1017–1028

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014) Tools for the implementation of the international code of conduct on pesticide management. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/code/toolkits/en/. Accessed 12 May 2014

  • Febbraio F, Merone L, Cetrangolo GP, Rossi M, Nucci R, Manco G (2011) Thermostable esterase 2 from Alicyclobacillus acidocaldarius as biosensor for the detection of organophosphate pesticides. Anal Chem 83(5):1530–1536. doi:10.1021/ac102025z

    Article  CAS  PubMed  Google Scholar 

  • Francic N, Bellino MG, Soler-Illia GJAA, Lobnik A (2014) Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability. Analyst 139:3127–3136

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Truong YB, Cacioli P, Butler P, Kyratzis IL (2014) Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles. Enzyme Microb Technol 54:38–44

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 6:497–526

    Article  CAS  Google Scholar 

  • Gill I, Ballesteros A (2000) Bioencapsulation within synthetic polymers (part 2): non-sol–gel protein-polymer composites. Trends Biotechnol 18:469–479

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith M, Ashani Y, Simo Y, Ben-David M, Leader H, Silman I et al (2012) Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification. Chem Biol 19(4):456–466

    Article  CAS  PubMed  Google Scholar 

  • Gotthard G, Hiblot J, Gonzalez D, Elias M, Chabriere E (2013) Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes. PLoS One 8, e77995. doi:10.1371/journal.pone.0077995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimsley JK, Singh WP, Wild JR, Giletto A (2001) A novel, enzyme-based method for the wound-surface removal and decontamination of organophosphorous nerve agents. Bioact Fibers Polymers 742:35–49

    Article  CAS  Google Scholar 

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage 2006–2007 market estimates. US Environmental Protection Agency, Washington, DC. http://www.epa.gov/opp00001/pestsales/07pestsales/market_estimates2007.pdf

  • Gupta RC (2005) Toxicology of organophosphate and carbamate compounds. Academic, London

    Google Scholar 

  • Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G, Bar H et al (2011) Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat Chem Biol 7(2):120–125

    Article  CAS  PubMed  Google Scholar 

  • Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R et al (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11(5):412–419

    Article  CAS  PubMed  Google Scholar 

  • Harper LL, McDaniel CS, Miller CE, Wild JR (1988) Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl Environ Microbiol 54(10):2586–2589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawwa R, Aikens J, Turner RJ, Santarsiero BD, Mesecar AD (2009a) Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus. Arch Biochem Biophys 488:109–120

    Article  CAS  PubMed  Google Scholar 

  • Hawwa R, Larsen SD, Ratia K, Mesecar AD (2009b) Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans. J Mol Biol 393:36–57

    Article  CAS  PubMed  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiblot J, Gotthard G, Chabriere E, Elias M (2012a) Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Sci Rep 2:779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiblot J, Gotthard G, Chabriere E, Elias M (2012b) Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus. PLoS ONE 7(10), e47028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiblot J, Gotthard G, Elias M, Chabriere E (2013) Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox. PLoS ONE 8(9), e75272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiblot J, Bzdrenga J, Champion C, Chabriere E, Elias M (2015) Crystal structure of VmoLac, a tentative quorum quenching lactonase from the extremophilic crenarchaeon Vulcanisaeta moutnovskia. J Sci Rep 5:8372

    Article  CAS  Google Scholar 

  • Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002) Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68(7):3371–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horne I, Qiu X, Russell RJ, Oakeshott JG (2003) The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable. FEMS Microbiol Lett 222(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Hraiech S, Hiblot J, Lafleur J, Lepidi H, Papazian L, Rolain JM, Raoult D, Elias M, Silby MW, Bzdrenga J, Bregeon F, Chabriere E (2014) Inhaled lactonase reduces Pseudomonas aeruginosa quorum sensing and mortality in rat pneumonia. PLoS ONE 9(10), e107125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Islam SM, Math RK, Cho KM, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2010) Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. J Agric Food Chem 58(9):5380–5386

    Article  CAS  PubMed  Google Scholar 

  • Iyer R, Iken B (2015) Protein engineering of representative hydrolytic enzymes for remediation of organophosphates. Biochem Eng J 94:134–144

    Article  CAS  Google Scholar 

  • Jackson CJ, Foo JL, Kim HK, Carr PD, Liu JW, Salem G, Ollis DL (2008) In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. J Mol Biol 375(5):1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Jeong YS, Choi JM, Kyeong HH, Choi JY, Kim EJ, Kim HS (2014) Rational design of organophosphorus hydrolase with high catalytic efficiency for detoxifying a V-type nerve agent. Biochem Biophys Res Commun 449(3):263–267

    Article  CAS  PubMed  Google Scholar 

  • Jin F, Wang J, Shao H, Jin M (2010) Pesticide use and residue control in China. J Pestic Sci 35:138–142

    Article  CAS  Google Scholar 

  • Jones MB, Peterson SN, Benn R, Braisted JC, Jarrahi B et al (2010) Role of luxS in Bacillus anthracis growth and virulence factor expression. Virulence 1:72–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi KA, Prouza M, Kum M, Wang J, Tang J, Haddon R, Chen W, Mulchandani A (2006) V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode. Anal Chem 78:331

    Article  CAS  PubMed  Google Scholar 

  • Josse D, Lockridge O, Xie W, Bartels CF, Schopfer LM, Masson P (2001) The active site of human paraoxonase (PON1). J Appl Toxicol 21(S1):S7–S11

    Article  CAS  PubMed  Google Scholar 

  • Kallnik V, Bunescu A, Sayer C, Bräsen C, Wohlgemuth R, Littlechild J, Siebers B (2014) Characterization of a phosphotriesterase-like lactonase from the hyperthermoacidophilic crenarchaeon Vulcanisaeta moutnovskia. J Biotechnol 190:11–17

    Article  CAS  PubMed  Google Scholar 

  • Kawahara K, Tanaka A, Yoon J, Yokota A (2010) Reclassification of a parathion degrading Flavobacterium sp. ATCC 27551 as Sphingobium fuliginis. J Gen Appl Microbiol 56(3):249–255

    Article  CAS  PubMed  Google Scholar 

  • Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10:498–508

    Article  CAS  PubMed  Google Scholar 

  • Kiss A, Virág D (2009) Photostability and photodegradation pathways of distinctive pesticides. J Environ Qual 38(1):157–163

    Article  CAS  PubMed  Google Scholar 

  • Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N (2014) A review on the molecular mechanisms involved in insulin resistance induced by organophosphorus pesticides. Toxicology 322:1–13

    Article  CAS  PubMed  Google Scholar 

  • LeJeune KE, Mesiano AJ, Bower SB, Grimsley JK, Wild JR, Russell AJ (1997) Dramatically stabilised phosphotriesterase polymers for nerve agent degradation. Biotechnol Bioeng 54:105–114

    Article  CAS  PubMed  Google Scholar 

  • LeJeune KE, Wild JR, Russell AJ (1998) Nerve agents degraded by enzymatic foams. Nature 395(6697):27–28

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhu Y, Benz I, Schmidt MA, Chen W, Mulchandani A, Qiao C (2008) Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway. Biotechnol Bioeng 99:485–490

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang JJ, Wang SJ, Zhang XE, Zhou NY (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334(4):1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Wang Y, Zhang Y, Xiong N, Yang B et al (2009) Heterologous expression of human paraoxonases in Pseudomonas aeruginosa inhibits biofilm formation and decreases antibiotic resistance. Appl Microbiol Biotechnol 83:135–141

    Article  CAS  PubMed  Google Scholar 

  • Mackness B, Durrington PN, Mackness MI (2000) The paraoxonase gene family and coronary heart disease. Curr Opin Lipidol 13:357–363

    Article  Google Scholar 

  • Madej T, Addess KJ, Fong JH, Geer LY, Geer RC, Lanczycki CJ et al (2012) MMDB: 3D structures and macromolecular interactions. Nucleic Acids Res 40(Database issue):D461–D464

    Google Scholar 

  • Mandrich L, Manco G (2009) Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Biochemistry 48(24):5602–5612

    Article  CAS  PubMed  Google Scholar 

  • Mandrich L, Porzio E, Merone L, Febbraio F, Nucci R, Manco G (2011) Exploring thermostable quorum quenching lactonases to counteract bacterial infections in cystic fibrosis. In: Mendez-Vilas A (ed) Science and technology against microbial pathogens. Research, development and evaluation. Proceedings of the international conference on antimicrobial research (ICAR2010). World Scientific, pp 150–154

    Google Scholar 

  • Mandrich L, Di Gennaro S, Palma A, Manco G (2013) A further biochemical characterization of DrPLL the thermophilic lactonase from Deinococcus radiodurans. Protein Pept Lett 20(1):36–44

    Article  CAS  PubMed  Google Scholar 

  • Marrazza G (2014) Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors 4:301–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masson P, Rochu D (2009) Catalytic bioscavengers against toxic esters, an alternative approach for prophylaxis and treatments of poisonings. Acta Nat 1(1):68–79

    Google Scholar 

  • Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S, Barondeau DP, Hocker B, Sterner R, Raushel FM (2013) Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. J Am Chem Soc 135:11670–11677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merone L, Mandrich L, Rossi M, Manco G (2005) A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 9(4):297–305

    Article  CAS  PubMed  Google Scholar 

  • Merone L, Mandrich L, Porzio E, Rossi M, Müller S, Reiter G, Worek F, Manco G (2010) Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase. Bioresour Technol 101(23):9204–9212

    Article  CAS  PubMed  Google Scholar 

  • Munnecke DM (1979) Hydrolysis of organophosphate insecticides by an immobilized-enzyme system. Biotechnol Bioeng 21:2247–2261

    Article  CAS  PubMed  Google Scholar 

  • Nachon F, Brazzolotto X, Trovaslet M, Masson P (2013) Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact 206:536–544

    Article  CAS  PubMed  Google Scholar 

  • Naqvi T, Warden AC, French N, Sugrue E, Carr PD, Jackson CJ et al (2014) A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. PLoS ONE 9(4), e94177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ng FSW, Wright DM, Seah SYK (2011) Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing. Appl Environ Microbiol 77(4):1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Ojha A, Gupta Y (2014) Evaluation of genotoxic potential of commonly used organophosphate pesticides in peripheral blood lymphocytes of rats. Hum Exp Toxicol pii, 0960327114537534. [Epub ahead of print]

    Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Castrejón Godínez ML, Dantan González E, Popoca Ursino EC (2013) Mechanisms and strategies for pesticide biodegradation: opportunity for waste, soils and water cleaning. Rev Int Contam Ambie 29:85–104

    Google Scholar 

  • Pinjari AB, Novikov B, Rezenom YH, Russell DH, Wales ME, Siddavattam D (2012) Mineralization of acephate, a recalcitrant organophosphate insecticide is initiated by a Pseudomonad in environmental samples. PLoS One 7, e31963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinjari AB, Pandey JP, Kamireddy S, Siddavattam D (2013) Expression and subcellular localization of organophosphate hydrolase in acephate-degrading Pseudomonas sp. strain Ind01 and its use as a potential biocatalyst for elimination of organophosphate insecticides A.B. Lett Appl Microbiol 57:63–68

    Article  CAS  PubMed  Google Scholar 

  • Popat R, Crusz SA, Diggle SP (2008) The social behaviours of bacterial pathogens. Br Med Bull 87:63–75

    Article  PubMed  Google Scholar 

  • Porzio E, Merone L, Mandrich L, Rossi M, Manco G (2007) A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Biochimie 89(5):625–636

    Article  CAS  PubMed  Google Scholar 

  • Porzio E, Di Gennaro S, Palma A, Manco G (2013) Mn2+ modulates the kinetic properties of an archaeal member of the PLL family. Chem Biol Interact 203(1):251–256

    Article  CAS  PubMed  Google Scholar 

  • Ragnarsdottir KV (2000) Environmental fate and toxicology of organophosphate pesticides. J Geol Soc 157:859–876

    Article  CAS  Google Scholar 

  • Raushel FM (2002) Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol 5(3):288–295

    Article  CAS  PubMed  Google Scholar 

  • Raushel FM, Holden HM (2000) Phosphotriesterase: an enzyme in search of its natural substrate. Adv Enzymol Relat Areas Mol Biol 74:51–93

    CAS  PubMed  Google Scholar 

  • Reimmann C, Ginet N, Michel L, Keel C, Michaux P et al (2002) Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932

    Article  CAS  PubMed  Google Scholar 

  • Richins RD, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984–987

    Article  CAS  PubMed  Google Scholar 

  • Rochu D, Viguie N, Renault F, Crouzier D, Froment MT, Masson P (2004) Contribution of the active site metal cation to catalytic activity and to conformational stability of phosphotriesterase: a thermo- and pH-dependence study. Biochem J 380:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochu D, Chabriere E, Masson P (2007) Human paraoxonase: a promising approach for pre-treatment and therapy of organophosphorus poisoning. Toxicology 233(1):47–59

    Article  CAS  PubMed  Google Scholar 

  • Roodveldt C, Tawfik DS (2005) Shared promiscuous activities and evolutionary features in various members of amidohydrolase superfamily. Biochemistry 44:12728–12736

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Arredondo E, Solis-Heredia MJ, Rojas-Garcia E, Ochoa IH, Quintanilla Vega B (2008) Sperm chromatin alteration and DNA damage by methyl-parathion, chlorpyrifos and diazinon and their oxon metabolites in human spermatozoa. Reprod Toxicol 25:455–460

    Article  CAS  PubMed  Google Scholar 

  • Segers P, Vancanneyt M, Pot B, Torck U, Hoste B, Dewettinck D et al (1994) Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 44(3):499–510

    Article  CAS  PubMed  Google Scholar 

  • Seibert CM, Raushel FM (2005) Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44(17):6383–6391

    Article  CAS  PubMed  Google Scholar 

  • Shimazu M, Mulchandani A, Chen W (2001) Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 76:318–324

    Article  CAS  PubMed  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7(2):156–164

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471

    Article  CAS  PubMed  Google Scholar 

  • Spain JC, Gibson DT (1991) Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl Environ Microbiol 57:812–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanga X, Lianga B, Yi T, Manco G, Palchetti I, Liua A (2014) Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates. Enzyme Microb Technol 55:107–112

    Article  CAS  Google Scholar 

  • Tehei M, Madern D, Franzetti B, Zaccai G (2005) Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature. J Biol Chem 280:40974–40979

    Article  CAS  PubMed  Google Scholar 

  • Theriot CM, Grunden AM (2011) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Theriot CM, Du X, Tove SR, Grunden AM (2010a) Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures. Appl Microbiol Biotechnol 87(5):1715–1726

    Article  CAS  PubMed  Google Scholar 

  • Theriot CM, Tove SR, Grunden AM (2010b) Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii. Appl Microbiol Biotechnol 86(1):177–188

    Article  CAS  PubMed  Google Scholar 

  • Theriot CM, Semcer RL, Shah SS, Grunden AM (2011) Improving the catalytic activity of hyperthermophilic Pyrococcus horikoshii prolidase for detoxification of organophosphorus nerve agents over a broad range of temperatures. Archaea 2011:5651271–5651279

    Article  CAS  Google Scholar 

  • Tiryaki O, Temur C (2010) The fate of pesticide in the environment. J Biol Environ Sci 4(10):29–38

    Google Scholar 

  • Trovaslet-Leroy M, Musilova L, Renault F, Brazzolotto X, Misik J, Novotny L, Froment MT, Gillon E, Loiodice M, Verdier L, Masson P, Rochu D, Jun D, Nachon F (2011) Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. Toxicol Lett 206:14–23

    Article  CAS  PubMed  Google Scholar 

  • Tsai PC, Bigley A, Li Y, Ghanem E, Cadieux CL, Kasten SA et al (2010a) Stereoselective hydrolysis of organophosphate nerve agents by the bacterial phosphotriesterase. Biochemistry 49(37):7978–7987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai PC, Fan Y, Kim J, Yang L, Almo SC, Gao YQ, Raushel FM (2010b) Structural determinants for the stereoselective hydrolysis of chiral substrates by phosphotriesterase. Biochemistry 49(37):7988–7997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai PC, Fox N, Bigley AN, Harvey SP, Barondeau DP, Raushel FM (2012) Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents. Biochemistry 51(32):6463–6475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhooke JL, Benning MM, Raushel FM, Holden HM (1996) Three dimensional structure of the zinc containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Biochemistry 35:6020–6025

    Article  CAS  PubMed  Google Scholar 

  • Vyas NK, Nickitenko A, Rastogi VK, Shah SS, Quiocho FA (2010) Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase. Biochemistry 49(3):547–559

    Article  CAS  PubMed  Google Scholar 

  • Wanekaya AK, Chenb W, Mulchandani A (2008) Recent biosensing developments in environmental security. J Environ Monit 10:703–712

    Article  CAS  PubMed  Google Scholar 

  • Worek F, Seeger T, Goldsmith M, Ashani Y, Leader H, Sussman JS, Tawfik D, Thiermann H, Wille T (2014) Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro. Arch Toxicol 88(6):1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Xiang DF, Kolb P, Fedorov AA, Meier MM, Fedorov LV et al (2009) Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily. Biochemistry 48:2237–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Liu N, Guo X, Qiao C (2006) Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265:118–125

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Liu R, Yuan Y, Liu J, Cao X, Qiao C, Song C (2013) Construction of a green fluorescent protein (GFP)-marked multifunctional pesticide-degrading bacterium for simultaneous degradation of organophosphates and γ-hexachlorocyclohexane. J Agric Food Chem 61(6):1328–1334

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Cui ZL, Jiang J, He J, Gu X, Li S (2005) Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Can J Microbiol 51(4):337–343

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Cui ZL, Zhang X, Jiang J, Gu JD, Li SP (2006) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17(5):465–472

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, An J, Ye W, Yang G, Qian ZG, Chen HF, Cui L, Feng Y (2012) Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides. Appl Environ Microbiol 78(18):6647–6655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, An J, Yang GY, Bai A, Zheng B, Lou Z, Wu G, Ye W, Chen HF, Feng Y, Manco G (2015) Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426. PLoS ONE 10(2), e0115130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67(10):4922–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported from the Italian Ministry for University and Research (MIUR) (project PON01_01585 to G.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Porzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Porzio, E., Del Giudice, I., Manco, G. (2016). Engineering of Extremophilic Phosphotriesterase-Like Lactonases for Biotechnological Applications. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_16

Download citation

Publish with us

Policies and ethics