Skip to main content

Mechanism of Arsenic Toxicity and Tolerance in Plants: Role of Silicon and Signalling Molecules

  • Chapter
Stress Responses in Plants

Abstract

Arsenic (As) contamination is a major environmental problem. It has become a major limiting factor in the growth and yield of crop plants, affecting the sustainability of agriculture production. Arsenic taken up by the plant tissue causes severe damage to important cellular components, such as lipids, protein, DNA and RNA. Mostly, inorganic forms of As, arsenate and arsenite, are found to be more toxic. To mitigate and reduce the negative effects of As, various prospects have been evaluated. Silicon (Si) has been found to serve as a beneficial element for plant growth and development, and its accumulation is helpful in maintaining sustainable production. Studies have revealed the ability of Si to mitigate various biotic and abiotic stresses in crop plants. It is also known that phosphate transporter recognizes arsenate while arsenite is taken up as a Si transporter. There is a lack of information available on the interactive effects of As and Si, especially in terrestrial or crop plants. On the other hand, signalling molecules are also known to regulate plant metabolism, growth and development under various stresses. The signal pathways either operate independently or may positively or negatively modulate other pathways. This chapter examines the participation and interaction of As and Si in plants. Furthermore, role of signalling molecules is also discussed to mitigate As-induced damages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsenic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant and Soil 304:277–289

    Article  CAS  Google Scholar 

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmad MA, Gupta M (2013) Exposure of Brassica juncea (L) to arsenic species in hydroponic medium: comparative analysis in accumulation and biochemical and transcriptional alterations. Environ Sci Pollut Res Int 20:8141–8150

    Article  CAS  PubMed  Google Scholar 

  • Ahmad MA, Gaur R, Gupta M (2012) Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers. J Hazard Mater 217–218:141–148

    Article  PubMed  Google Scholar 

  • Ahsan N, Lee DG, Alam I (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    Article  CAS  PubMed  Google Scholar 

  • Alexander TF, Jürgen M, Manfred KS (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutrit Soil Sci 176:785–794

    Google Scholar 

  • Bienert GP, Thorsen M, Schussler MD (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Plant Biol 6:26

    Article  Google Scholar 

  • Briat FJ (2010) Arsenic tolerance in plants: “Pas de deux” between phytochelatin synthesis and ABCC vacuolar transporters. Proc. Natl. Acad. Sci. USA 107: 20853-20854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao X, Ma LQ, Tu C (2004) Antioxidant responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut 128:317–325

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Barrachina AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH (1998) The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil 198:33–43

    Article  CAS  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Phyisiol 141:108–120

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):663–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma glutamylcysteine synthetase expression. Nature Biotech 20:1140–1145

    Article  CAS  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103:5413–5418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duman F, Oztruk F, Aydin Z (2010) Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As (III) and As(V): effects of concentration and duration of exposure. Ecotoxicol 19:983–993

    Article  CAS  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–644

    Article  CAS  PubMed  Google Scholar 

  • Fleck AT, Mattusch J, Schenk MK (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutrient Soil Sci 176:785–794

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox Hub. Plant Physiol 155(1):2–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Bio 64:361–369

    Article  CAS  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathways of As (III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gottardi S, Iacuzzoa F, Tomasia N, Cortellab G, Manzoccoc L, Pintona R, Römheldd V, Mimmoe T, Scampicchioe M, Dalla-Costaa L, Cescoe S (2012) Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta L.) plants. Plant Physiol Biochem 56:14–23

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Hou YL, Wang SG, Zhu YG (2005) Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant Soil 273:173–181

    Article  Google Scholar 

  • Guo Y, Liu L, Zhao J, Yang B (2007) Use of silicon oxide and sodium silicate for controlling Trichothecium roseum postharvest rot in Chinese cantaloupe (Cucumis melo L.). Plant Soil 42:1012–1018

    CAS  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper and arsenate induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:13–22

    Article  Google Scholar 

  • Haug CM, Reimer KJ, Cullen WR (2004) Arsenic uptake by the Douglas-fir (Pseudotsuga menziesii). Appl Organomet Chem 18:626–630

    Article  CAS  Google Scholar 

  • Hu H, Zhang J, Wang H, Li R, Pan F, Wu J, Feng Y, Ying Y, Liu Q (2013) Effect of silicate supplementation on the alleviation of arsenite toxicity in 93-11 (Oryza sativa L. indica). Environ Sci Pollut Rese 20:8579–8589

    Article  CAS  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Bio Repo 39:969–987

    Article  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Karimi N, Ghaderian SM, Raab A, Feldmann J, Meharg AA (2009) An arsenic accumulating, hypertolerant Brassica, Isatiscap adocica. New Phytol 184:41–47

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203

    Article  CAS  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, ShaulYalovsky S, Gruissem W (2002) Calmodulins and calcineurin B–like proteins calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma FJ, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Planta 29:177–187

    Article  CAS  Google Scholar 

  • Mallick S, Sinam G, Sinha S (2011) Study on arsenate tolerant and sensitive cultivars of Zea mays L. Differential detoxification mechanism and effect on nutrients status. Ecotoxicol Environ Saf 74:1316–1324

    Article  CAS  PubMed  Google Scholar 

  • Martin ML, Busconi L (2001) A rice membrane-bound calcium dependent protein kinase is activated in response to low temperature. Plant Physiol 125:1442–1449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meharg AA (2003) Variation in arsenic accumulation—hyperaccumulation in ferns and their allies. New Phytol 157:25–31

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Mihucz VG, Tatar E, Virag I, Cseh E, Fodor F, Zaray G (2005) Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.). Anal Bio Chem 383:461–466

    Article  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Norton G, Lou-Hing DE, Meharg AA, Price AH (2008) Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasternak T, Rudas V, Potters G, Jansen MAK (2005a) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299–314

    Article  Google Scholar 

  • Pasternak T, Potters G, Caubergs R, Jansen MAK (2005b) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56:1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physio 122:1171–1177

    Article  CAS  Google Scholar 

  • Quaghebeur M, Rengel Z (2004) Arsenic uptake, translocation and speciation in pho1 and pho2 mutants of Arabidopsis thaliana. Physiol Plant 120:280–286

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochem 66:1519–1528

    Article  CAS  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Pellouxa J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanglard LMVP, Martins SC, Detmann KC, Silva PE, Lavinsky AO, Silva MM, Detmann E, Araújo WL, Damatta FM (2014) Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiol Plant. doi:10.1111/ppl.12178

    PubMed  Google Scholar 

  • Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulz H, Hartling S, Tannebergm H (2008) The identification and quantification of arsenic-induced phytochelatins—comparison between plants with varying As sensitivities. Plant Soil 303:275–287

    Article  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochem 66:1551–1559

    Article  CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6(2):196–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431

    Article  CAS  PubMed  Google Scholar 

  • Su YH, McGrath SP, Zhu YG, Zhao FJ (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 180:434–441

    Article  CAS  PubMed  Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant and Soil 328:27–34

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Tren Biotec 25:158–165

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ (2003) Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulatorPteris vittata L. Plant Soil 249:373–382

    Article  CAS  Google Scholar 

  • Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta Biomemb 1758:1165–1175

    Article  CAS  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, McGrath SP, Meharg A, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  CAS  PubMed  Google Scholar 

  • Yeh CM, Hsiao LJ, Huang HJ (2004) Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiol 45:1306–1312

    Article  CAS  PubMed  Google Scholar 

  • Zhang WH, Cai Y, Downum KR, Ma LQ (2004) Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ Pollut 131:37–45

    Article  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meetu Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, M., Khan, E. (2015). Mechanism of Arsenic Toxicity and Tolerance in Plants: Role of Silicon and Signalling Molecules. In: Tripathi, B., Müller, M. (eds) Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-13368-3_6

Download citation

Publish with us

Policies and ethics