Skip to main content

Analyzing Fluid Flows via the Ergodicity Defect

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 3

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1042 Accesses

Abstract

The ergodicity defect, a relatively new approach for analyzing fluid flows, is presented. The technique combines tools and concepts from ergodic theory and wavelet theory, and we briefly consider this theoretical background. The ergodicity defect provides a measure of the complexity of individual fluid particle trajectories and this measurement is used to identify Lagrangian coherent structures in the flow. Results for both idealized and realistic ocean flows are compared and contrasted with other methods for identifying coherent structures. Other possible applications for the technique are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aref H. Stirring by chaotic advection. J Fluid Mech. 1984;143:1–21.

    Article  MATH  MathSciNet  Google Scholar 

  2. Birkhoff G. Proof of the ergodic theorem. Proc Natl Acad Sci. 1931b;17:656–60.

    Article  Google Scholar 

  3. Daubechies I. Ten Lectures on Wavelets CBMS-NSF Reg. Conf. Ser. Appl. Math. Soc. Ind. Appl. Math, Philadelphia; 1992.

    Google Scholar 

  4. Debnath, L. Wavelet transforms and their applications. Boston: Birkhauser; 2002.

    Google Scholar 

  5. Froyland G, Padberg K, England M, Treguier A. Detection of coherent oceanic structures via transfer operators. Phys Rev Lett. 2007;98:1–4.

    Article  Google Scholar 

  6. Grassberger P, Procaccia I. Measure the strangeness of strange attractors. Phys D. 1983;9:189–208.

    Article  MATH  MathSciNet  Google Scholar 

  7. Haller G, Sapsis T. Lagrangian coherent structures and the smallest finite-time Lyapunov exponent. Chaos. 2011;2:1–7.

    MathSciNet  Google Scholar 

  8. Kuznetsov L, Jones C, Toner M, Kirwan AD Jr. Assessing coherent feature kinematics in ocean models. Phys D. 2004;191:81–105.

    Article  MATH  MathSciNet  Google Scholar 

  9. Lasota A, Mackey M. Chaos, fractals and noise. Applied Mathematical Science 97. Berlin:Springer; 1994.

    Book  Google Scholar 

  10. Lekien F, Shadden SC, Marsden JE. Lagrangian coherent structure in n-dimensional systems. J Math Phys. 2007;48:1–19.

    Article  MathSciNet  Google Scholar 

  11. Madrid JA, Mancho AM. Distinguished trajectories in time dependent vector fields. Chaos. 2009;19:1–18.

    Article  Google Scholar 

  12. Malhotra N, Mezić I, Wiggins S. Patchiness: a new diagnostic for Lagrangian trajectory analysis in fluid flows. J Bifurc Chaos. 1998;8:1053–94.

    Article  MATH  Google Scholar 

  13. Mane R. Ergodic theory and differentiable dynamics. New York: Springer-Verlag; 1987.

    Google Scholar 

  14. Mathew G, Mezić I. Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Phys D. 2011;240:432–42.

    Article  MATH  Google Scholar 

  15. Mathew G, Mezić I, Petzold L. A multiscale measure for mixing and its applications. Phys D. 2005;211:23–46.

    Article  MATH  MathSciNet  Google Scholar 

  16. Mezić I. Caltech PhD Thesis; 1994

    Google Scholar 

  17. Mezić I, Wiggins S. A method for visualization of invariant sets of dynamical systems based on the ergodic partition. Chaos. 1999;9:213–8.

    Article  MATH  MathSciNet  Google Scholar 

  18. Oliver M. Special issue on applications of wavelets in the geosciences. Math Geosci. 2009;41:609–10.

    Google Scholar 

  19. Petersen K. Ergodic theory. Cambridge: Cambridge University Press; 1983.

    Google Scholar 

  20. Poje AC, Haller G, Mezić I. The geometry and statistics of mixing in aperiodic flows. Phys Fluids. 1999;11:2963–8.

    Article  MATH  MathSciNet  Google Scholar 

  21. Rypina I, Scott S, Pratt LJ, Brown MG. Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures. Nonlinear Proc Geophys. AQ12011;977–87.

    Google Scholar 

  22. Scott SE. Different perspectives and formulas for capturing deviation from ergodicity. SIAM J Appl Dyn Syst. 2014;124:1889–947.

    Google Scholar 

  23. Scott SE. Characterizing and capturing ergodic properties of random processes with a focus on geoscience applications. Submitted to IEEE Transactions on Information Theory

    Google Scholar 

  24. Scott SE, Redd C, Kutznetsov L, Mezić I, Jones C. Capturing deviation from ergodicity at different scales. Phys D Nonlinear Phenom. 2009;238:1668–79.

    Article  MATH  Google Scholar 

  25. Shadden SC, Lekien F, Marsden JE. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys D. 2005;212:271–304.

    Article  MATH  MathSciNet  Google Scholar 

  26. Shchepetkin AF, McWilliams JC. The regional ocean modeling system: a split-explicit, free-surface, topography following coordinates ocean model. Ocean Model. 2005;9:347–404.

    Article  Google Scholar 

  27. Sturman R, Ottino J, Wiggins S. The mathematical foundations of mixing. Cambridge: Cambridge University Press; 2006.

    Book  MATH  Google Scholar 

  28. Tupper PF. Ergodicity and the numerical simulation of Hamiltonian systems. Submitted

    Google Scholar 

  29. Walnut D. An introduction to wavelet analysis. Boston: Birkhauser; 2002.

    MATH  Google Scholar 

  30. Walters P. Introduction to ergodic theory. New York: Springer; 1982.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherry E. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scott, S. (2015). Analyzing Fluid Flows via the Ergodicity Defect. In: Balan, R., Begué, M., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 3. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-13230-3_6

Download citation

Publish with us

Policies and ethics