Skip to main content

Sinai’s Dynamical System Perspective on Mathematical Fluid Dynamics

  • Chapter
  • First Online:
The Abel Prize 2013-2017

Part of the book series: The Abel Prize ((AP))

Abstract

We review some of the most remarkable results obtained by Ya.G. Sinai and collaborators on the difficult problems arising in the theory of the Navier–Stokes equations and related models. The survey is not exhaustive, and it omits important results, such as those related to “Burgers turbulence”. Our main focus in on acquainting the reader with the application of the powerful methods of dynamical systems and statistical mechanics to this field, which is the main original feature of Sinai’s contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Angenent. The zero set of a solution of a parabolic equation. J. Reine Angew. Math., 390:79–96, 1988.

    MathSciNet  MATH  Google Scholar 

  2. M. Arnold, Y. Bakhtin, and E. Dinaburg. Regularity of solutions to vorticity Navier–Stokes system on \(\mathbb {R}^2\). Comm. Math. Phys., 258(2):339–348, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  3. V.I. Arnol’d. Lectures on bifurcations and versal families (in Russian). Uspehi Mat. Nauk, 27(5(167)):119–184, 1972.

    Google Scholar 

  4. C. Boldrighini and P. Buttà. Navier–Stokes equations on a flat cylinder with vorticity production on the boundary. Nonlinearity, 24(9):2639–2662, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Boldrighini, S. Frigio, and P. Maponi. On the blow-up of some complex solutions of the 3D Navier–Stokes equations: theoretical predictions and computer simulations. IMA J. Appl. Math., 82(4):697–716, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Boldrighini, D. Li, and Ya.G. Sinai. Complex singular solutions of the 3-d Navier–Stokes equations and related real solutions. J. Stat. Phys., 167(1):1–13, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bricmont, A. Kupiainen, and R. Lefevere. Probabilistic estimates for the two-dimensional stochastic Navier–Stokes equations. J. Statist. Phys., 100(3–4):743–756, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Cannone and F. Planchon. On the regularity of the bilinear term for solutions to the incompressible Navier–Stokes equations. Rev. Mat. Iberoamericana, 16(1):1–16, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  9. X.-Y. Chen. A strong unique continuation theorem for parabolic equations. Math. Ann., 311(4):603–630, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Constantin and C. Foias. Navier–Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988.

    MATH  Google Scholar 

  11. J. Cortissoz. Some elementary estimates for the Navier–Stokes system. Proc. Amer. Math. Soc., 137(10):3343–3353, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.C. Cortissoz. On the blow-up behavior of a nonlinear parabolic equation with periodic boundary conditions. Arch. Math. (Basel), 97(1):69–78, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Dinaburg, D. Li, and Ya. G. Sinai. A new boundary problem for the two dimensional Navier–Stokes system. J. Stat. Phys., 135(4):737–750, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Dinaburg, D. Li, and Ya. G. Sinai. Navier–Stokes system on the flat cylinder and unit square with slip boundary conditions. Commun. Contemp. Math., 12(2):325–349, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  15. E.I. Dinaburg and Ya. G. Sinai. A quasilinear approximation for the three-dimensional Navier–Stokes system. Mosc. Math. J., 1(3):381–388, 471, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  16. E.I. Dinaburg and Ya. G. Sinai. On some approximation of the 3D Euler system. Ergodic Theory Dynam. Systems, 24(5):1443–1450, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  17. C.R. Doering and E.S. Titi. Exponential decay rate of the power spectrum for solutions of the Navier–Stokes equations. Phys. Fluids, 7(6):1384–1390, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. E, J.C. Mattingly, and Ya. Sinai. Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation. Comm. Math. Phys., 224(1):83–106, 2001.

    Google Scholar 

  19. F. Flandoli. Dissipativity and invariant measures for stochastic Navier–Stokes equations. NoDEA Nonlinear Differential Equations Appl., 1(4):403–423, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Foias, O. Manley, R. Rosa, and R. Temam. Navier–Stokes Equations and Turbulence, volume 83 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  21. C. Foias and R. Temam. Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal., 87(2):359–369, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Friedlander and N. Pavlović. Blowup in a three-dimensional vector model for the Euler equations. Comm. Pure Appl. Math., 57(6):705–725, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Hopf. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr., 4:213–231, 1951.

    Article  MathSciNet  MATH  Google Scholar 

  24. H.-O. Kreiss. Fourier expansions of the solutions of the Navier–Stokes equations and their exponential decay rate. In Analyse Mathématique et Applications, pages 245–262. Gauthier-Villars, Montrouge, 1988.

    Google Scholar 

  25. S. Kuksin and A. Shirikyan. Stochastic dissipative PDEs and Gibbs measures. Comm. Math. Phys., 213(2):291–330, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  26. O.A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flow, volume 2 of Mathematics and its Applications. Gordon and Breach, Science Publishers, New York-London-Paris, 1969.

    MATH  Google Scholar 

  27. O.A. Ladyzhenskaya. A dynamical system generated by the Navier–Stokes equations. J. Sov. Math., 3:458–479, 1975.

    Article  MATH  Google Scholar 

  28. Y. Le Jan and A.S. Sznitman. Stochastic cascades and 3-dimensional Navier–Stokes equations. Probab. Theory Related Fields, 109(3):343–366, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  29. Z. Lei and F. Lin. Global mild solutions of Navier–Stokes equations. Comm. Pure Appl. Math., 64(9):1297–1304, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  30. Jean Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63(1):193–248, 1934.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Li. Bifurcation of critical points for solutions of the 2D Euler and 2D quasi-geostrophic equations. J. Stat. Phys., 149(1):92–107, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Li and Ya. G. Sinai. Blow ups of complex solutions of the 3D Navier–Stokes system and renormalization group method. J. Eur. Math. Soc. (JEMS), 10(2):267–313, 2008.

    Google Scholar 

  33. D. Li and Ya. G. Sinai. Bifurcations of solutions of the 2-dimensional Navier–Stokes system. In Essays in mathematics and its applications, pages 241–269. Springer, Heidelberg, 2012.

    Chapter  Google Scholar 

  34. D. Li and Ya. G. Sinai. Nonsymmetric bifurcations of solutions of the 2D Navier–Stokes system. Adv. Math., 229(3):1976–1999, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  35. J.C. Mattingly and Ya. G. Sinai. An elementary proof of the existence and uniqueness theorem for the Navier–Stokes equations. Commun. Contemp. Math., 1(4):497–516, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  36. Ya. Sinai. Power series for solutions of the 3D-Navier–Stokes system on R 3. J. Stat. Phys., 121(5–6):779–803, 2005.

    Google Scholar 

  37. Ya G. Sinai. Diagrammatic approach to the 3D Navier–Stokes system. Russ. Math. Surv., 60(5):849–873, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  38. Ya. G. Sinai. On local and global existence and uniqueness of solutions of the 3D Navier–Stokes system on \(\mathbb {R}^3\). In Perspectives in Analysis, volume 27 of Math. Phys. Stud., pages 269–281. Springer, Berlin, 2005.

    Google Scholar 

  39. R. Temam. Navier–Stokes Equations: Theory and Numerical Analysis, volume 2 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York, revised edition, 1979.

    Google Scholar 

  40. R. Temam. Navier–Stokes Equations and Nonlinear Functional Analysis, volume 66 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 1995.

    Google Scholar 

  41. M.J. Vishik and A.V. Fursikov. Mathematical Problems of Statistical Hydromechanics, volume 9 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1988.

    Book  MATH  Google Scholar 

  42. V.I. Yudovich. The Linearization Method in Hydrodynamical Stability Theory, volume 74 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1989.

    Book  MATH  Google Scholar 

  43. T. Zhang. Bifurcations of solutions for the Boussinesq system in \(\mathbb {T}^2\). Nonlinear Anal. Real World Appl., 14(1):314–328, 2013.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Boldrighini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boldrighini, C., Li, D. (2019). Sinai’s Dynamical System Perspective on Mathematical Fluid Dynamics. In: Holden, H., Piene, R. (eds) The Abel Prize 2013-2017. The Abel Prize. Springer, Cham. https://doi.org/10.1007/978-3-319-99028-6_6

Download citation

Publish with us

Policies and ethics