Skip to main content

A Benefit from the L Smallness of Initial Data for the Semilinear Wave Equation with Structural Damping

  • Conference paper
Current Trends in Analysis and Its Applications

Part of the book series: Trends in Mathematics ((RESPERSP))

Abstract

In this note, we prove the global existence of small data solutions for a semilinear wave equation with structural damping,

$$u_{tt}-\Delta u + \mu(-\Delta)^{\frac{1}{2}} u_t = |u|^p, $$

for any n≥2 and p>1+2/(n−1). The damping term allows us to derive linear \(L^{q_{1}}-L^{q_{2}}\) estimates, for 1≤q 1q 2≤∞, without loss of regularity, in any space dimension. These estimates provide the basic tool to state our result, in which we assume initial data to be small in (L 1H 1L )×(L 1L n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.C. Charão, C.R. da Luz, R. Ikehata, Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space. J. Math. Anal. Appl. 408(1), 247–255 (2013). doi:10.1016/j.jmaa.2013.06.016

    Article  MathSciNet  Google Scholar 

  2. A. Córdoba, D. Córdoba, A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528 (2004). doi:10.1007/s00220-004-1055-1

    Article  MATH  Google Scholar 

  3. M. D’Abbicco, The influence of a nonlinear memory on the damped wave equation. Nonlinear Anal. 95, 130–145 (2014). doi:10.1016/j.na.2013.09.006

    Article  MATH  MathSciNet  Google Scholar 

  4. M. D’Abbicco, S. Lucente, A modified test function method for damped wave equations. Adv. Nonlinear Stud. 13, 867–892 (2013)

    MATH  MathSciNet  Google Scholar 

  5. M. D’Abbicco, S. Lucente, M. Reissig, Semilinear wave equations with effective damping. Chin. Ann. Math. 34B(3), 345–380 (2013). doi:10.1007/s11401-013-0773-0

    Article  MathSciNet  Google Scholar 

  6. M. D’Abbicco, M. Reissig, Semilinear structural damped waves. Math. Methods Appl. Sci. (2013). doi:10.1002/mma.2913

    Google Scholar 

  7. L. D’Ambrosio, S. Lucente, Nonlinear Liouville theorems for Grushin and Tricomi operators. J. Differ. Equ. 123, 511–541 (2003)

    Article  MathSciNet  Google Scholar 

  8. F.A.N.G. Daoyuan, L.U. Xiaojun, M. Reissig, High-order energy decay for structural damped systems in the electromagnetical field. Chin. Ann. Math. 31B(2), 237–246 (2010). doi:10.1007/s11401-008-0185-8

    Google Scholar 

  9. M. Ghisi, M. Gobbino, A. Haraux, Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation (in preparation)

    Google Scholar 

  10. R. Ikehata, Asymptotic Profiles for Wave Equations with Strong Damping (preprint) 11 pages

    Google Scholar 

  11. R. Ikehata, M. Natsume, Energy decay estimates for wave equations with a fractional damping. Differ. Integral Equ. 25(9-10), 939–956 (2012)

    MATH  MathSciNet  Google Scholar 

  12. R. Ikehata, G. Todorova, B. Yordanov, Wave equations with strong damping in Hilbert spaces. J. Differ. Equ. 254, 3352–3368 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Kobayashi, Y. Shibata, Remark on the rate of decay of solutions to linearized compressible Navier–Stokes equations. Pac. J. Math. 207(1), 199–234 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. L.U. Xiaojun, M. Reissig, Rates of decay for structural damped models with decreasing in time coefficients. Int. J. Dyn. Syst. Differ. Equ. 2, 21–55 (2009). doi:10.1504/IJDSDE.2009.028034

    MATH  MathSciNet  Google Scholar 

  15. S. Lucente, G. Ziliotti, A decay estimate for a class of hyperbolic pseudodifferential equations. Math. Appl. 10, 173–190 (1999)

    MATH  MathSciNet  Google Scholar 

  16. T. Narazaki, L pL q estimates for damped wave equations and their applications to semilinear problem. J. Math. Soc. Jpn. 56, 586–626 (2004)

    Article  MathSciNet  Google Scholar 

  17. T. Narazaki, M. Reissig, L 1 estimates for oscillating integrals related to structural damped wave models, in Studies in Phase Space Analysis with Applications to PDEs, ed. by M. Cicognani, F. Colombini, D. Del Santo. Progress in Nonlinear Differential Equations and Their Applications (Birkhäuser, Basel, 2013), pp. 215–258

    Chapter  Google Scholar 

  18. M. Reissig, Rates of decay for structural damped models with strictly increasing in time coefficients, in Israel Mathematical Conference Proceedings, Complex Analysis and Dynamical Systems IV, Part 2, May 18–22, Nahariya, Israel. Contemporary Mathematics, vol. 554 (2011), pp. 187–206

    Google Scholar 

  19. Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation. Math. Methods Appl. Sci. 23, 203–226 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Q.S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci., Ser. 1 Math. 333, 109–114 (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello D’Abbicco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

D’Abbicco, M. (2015). A Benefit from the L Smallness of Initial Data for the Semilinear Wave Equation with Structural Damping. In: Mityushev, V., Ruzhansky, M. (eds) Current Trends in Analysis and Its Applications. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-12577-0_25

Download citation

Publish with us

Policies and ethics