Skip to main content

Well-Posedness and Asymptotic Behavior for a Nonlinear Wave Equation

  • Chapter
  • First Online:
Recent Advances in PDEs: Analysis, Numerics and Control

Abstract

We consider the initial boundary value problem for nonlinear damped wave equations of the form \(u^{\prime \prime }+M({\textstyle \int _{\Omega }}\left \vert (-\Delta )^{s}u\right \vert ^{2}dx)\Delta u+(-\Delta )^{\alpha }u^{\prime }=f,\) with Neumann boundary conditions. We prove global existence of solutions, when s ∈ [1∕2, 1] and α ∈ (0, 1], and we show that the energy of these ones decays exponentially, as t →. The uniqueness of solutions is also obtained when α ∈ [1∕2, 1].

Dedicated to Prof. Enrique Fernández-Cara on the occasion of his 60th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aassila, M.: On quasilinear wave equation with strong damping. Funkcial. Ekvac. 41, 67–78 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Bernstein, S.: Sur une classe d’equations functionelles aux derivées partielles. Isv. Acad. Nauk SSSR, Serv. Math. 4, 17–26 (1940)

    Google Scholar 

  3. Brito, E.H.: The damped elastic stretched string equation generalized: existence, uniqueness, regularity and stability. Appl. Anal. 13, 219–233 (1982)

    Article  MathSciNet  Google Scholar 

  4. Carrier, G.F.: On the nonlinear vibration problem of the elastic string. Q. J. Appl. Math. 3, 157–165 (1945)

    Article  Google Scholar 

  5. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  6. Cousin, A.T., Frota, C.L., Larkin, N.A., Medeiros, L.A.: On the abstract model of the Kirchhoff-Carrier equation. Commun. Appl. Anal. 1(3), 389–404 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Cousin, A.T., Frota, C.L., Larkin, N.A.: Existence of global solutions and energy decay for the Carrier equation with dissipative term. Differential Integral Equation 12(4), 453–469 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Frota, C.L., Goldstein, J.A.: Some nonlinear wave equations with acoustic boundary conditions. J. Differ. Equ. 164, 92–109 (2000)

    Article  MathSciNet  Google Scholar 

  9. Kirchhoff, G.: Volersunger über Mechanik. Tauber Leipzig, Leipzig (1883)

    Google Scholar 

  10. Larkin, N.A.: Global regular solution for the nonhomogeneous Carrier equation. Math. Probl. Eng. 8, 15–31 (2002)

    Article  MathSciNet  Google Scholar 

  11. Lions, J.-L.: On some questions in boundary value problems of mathematical physics. In: de la Penha, G.M., Medeiros, L.A. (eds.) Contemporary Development in Continuons Mechanics and Partial Differential Equations. North-Holland, London (1978)

    Google Scholar 

  12. Lions, J.-L., Magenes, E.: Problémes aux limites non homogénes et applications, vol. 1. Dunod, Paris (1968)

    MATH  Google Scholar 

  13. Matos, M.P., Pereira, D.: On a hyperbolic equation with strong dissipation. Funkcial. Ekvac. 34, 303–331 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Medeiros, L.A., Milla Miranda, M.: Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order. Math. Appl. Comp. 6, 257–276 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Medeiros, L.A., Milla Miranda, M.: On a nonlinear wave equation with damping. Rev. Math. Univ. Complu. Madrid 3, 213–231 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Medeiros, L.A., Limaco, J., Menezes, S.B.: Vibrations of elastic string: mathematical aspects, part 1. J. Comput. Anal. Appl. 4(2), 91–127 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Medeiros, L.A., Limaco, J., Menezes, S.B.: Vibrations of elastic string: mathematical aspects, part 2. J. Comput. Anal. Appl. 4(3), 211–263 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Mimouni, S., Benaissa, A., Amroun, N.-E.: Global existence and optimal decay rate of solutions for the degenerate quasilinear wave equation with a strong dissipation. Appl. Anal. 89(6), 815–831 (2010)

    Article  MathSciNet  Google Scholar 

  19. Nishihara, K.: Degenerate quasilinear hyperbolic equation with strong damping. Funkcial. Ekvac. 27(1), 125–145 (1984)

    MathSciNet  MATH  Google Scholar 

  20. Nishihara, K., Yamada, Y.: On global solutions of some degenerate quasi-linear hyperbolic equations with dissipative terms. Funkcial. Ekvac. 33(1), 151–159 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Ono, K.: On decay properties of solutions for degenerate strongly damped wave equations of Kirchhoff type. J. Math. Anal. Appl. 381(1), 229–239 (2011)

    Article  MathSciNet  Google Scholar 

  22. Ono, K.: On sharp decay estimates of solutions for mildly degenerate dissipative wave equations of Kirchhoff type. Math. Methods Appl. Sci. 34(11), 1339–1352 (2011)

    Article  MathSciNet  Google Scholar 

  23. Park, J.Y., Bae, J.J., Jung, I.H.: On existence of global solutions for the carrier model with nonlinear damping and source terms. Appl. Anal. 77(3–4), 305–318 (2001)

    Article  MathSciNet  Google Scholar 

  24. Pohozhaev, S.I.: On a class of quasilinear hyperbolic equations. Math. USSR Sbornik 25, 145–158 (1975)

    Article  Google Scholar 

  25. Vasconcelos, C.F., Teixeira, L.M.: Strong solution and exponential decay for a nonlinear hyperbolic equation. Appl. Anal. 55, 155–173 (1993)

    Article  MathSciNet  Google Scholar 

  26. Yamada, Y.: On some quasilinear wave equations with dissipative terms. Nagoya Math. J. 87, 17–39 (1982)

    Article  MathSciNet  Google Scholar 

  27. Zuazua, E.: Stability and decay for a class of nonlinear hyperbolic problems. Asymptot. Anal. 1, 161–185 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The author “F. D. Araruna” is partially supported by INCTMat, CAPES, CNPq (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fágner Dias Araruna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araruna, F.D., Matias, F.d.O., Oliveira, M.d.L., Souza, S.M.S.e. (2018). Well-Posedness and Asymptotic Behavior for a Nonlinear Wave Equation. In: Doubova, A., González-Burgos, M., Guillén-González, F., Marín Beltrán, M. (eds) Recent Advances in PDEs: Analysis, Numerics and Control. SEMA SIMAI Springer Series, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-97613-6_2

Download citation

Publish with us

Policies and ethics