Skip to main content

Wendepunkts and Canards (Turning Points and Delayed Bifurcations)

  • Chapter
  • First Online:
Historical Developments in Singular Perturbations
  • 1059 Accesses

Abstract

We will soon realize that linear differential equations with turning points (Wendepunkts, in German) can feature complicated behavior. One of the best collections of illustrative examples (with sketches of the limiting solutions) is contained in the first chapter of a Dutch thesis, Hemker [202] , which aimed to provide methods to solve such two-point singularly perturbed problems numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.C. Ackerberg, R.E. O’Malley, Jr., Boundary layer problems exhibiting resonance. Stud. Appl. Math. 49, 277–295 (1970)

    MATH  MathSciNet  Google Scholar 

  2. S.M. Baer, T. Erneux, J. Rinzel, The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance. SIAM J. Appl. Math 49, 55–71 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978)

    MATH  Google Scholar 

  4. E. Benoit, J.L. Callot, F. Diener, M. Diener, Chasse au canard. Collect. Math. 31(1–3), 37–119 (1981)

    Google Scholar 

  5. N. Berglund, B. Gentz, C. Kuehn, Hunting French ducks in a noisy environment. J. Differ. Equ. 252, 4786–4841 (2010)

    Article  MathSciNet  Google Scholar 

  6. L.-Y. Chen, N. Goldenfeld, Y. Oono, Renormalization group and singular perturbations: Multiple-scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 54(1), 376–394 (1996)

    Article  Google Scholar 

  7. H. Cheng, Advanced Analytic Methods in Applied Mathematics, Science, and Engineering (LuBan Press, Boston, 2007)

    Google Scholar 

  8. G. Dahlquist, On transformations of graded matrices with applications to stiff ODEs. Numer. Math. 47, 363–385 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Dahlquist, L. Edsberg, G. Skollermo, G. Soderlind, Are the numerical methods and software satisfactory for chemical kinetics? Numerical Integration of Differential Equations and Large Linear Systems, vol. 968 of Lecture Notes in Math. (Springer, New York, 1982), pp. 149–164

    Google Scholar 

  10. P. De Maesschalck, Ackerberg-O’Malley resonance in boundary value problems with a turning point of any order. Commun. Pure Appl. Anal. 6, 311–333 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. P. De Maesschalck, On maximum bifurcation delay in real planar singularly perturbed vector fields. Nonlinear Anal. 68, 547–576 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Dieci, M.R. Osborne, R.D. Russell, A Riccati transformation method for solving linear BVPs. I: Theoretical aspects, II: Computational aspects. SIAM J. Numer. Anal. 25, 1055–1092 (1988)

    Google Scholar 

  13. F. Diener, M. Diener, Nonstandard Analysis in Practice (Springer, Berlin, 1995)

    Book  MATH  Google Scholar 

  14. M. Diener, The canard unchained or how fast/slow dynamical systems bifurcate. Math. Intelligencer 6(3), 38–49 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Erdélyi, Asymptotic Expansions (Dover, New York, 1956)

    MATH  Google Scholar 

  16. M.V. Fedoryuk, Asymptotic Analysis (Springer, New York, 1994)

    Google Scholar 

  17. A.C. Fowler, G. Kember, S.G.B. O’Brien, Small exponent asymptotics. IMA J. Appl. Math. 64, 23–38 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Fruchard, R. Schäfke, Composite asymptotic expansions and turning points of singularly perturbed ordinary differential equations, vol. 2066 of Lect. Notes in Math. (Springer, Berlin, 2012)

    Google Scholar 

  19. C. Gavin, A. Pokrovskii, M. Prentice, V. Sobolev, Dynamics of a Lotka-Volterra type model with applications to marine phage population dynamics. J. Phys. Conf. Ser. 55, 80–95 (2006)

    Article  Google Scholar 

  20. J. Grasman, O.A. van Herwaarden, Asymptotic Methods for the Fokker-Planck Equations and the Exit Problem in Applications (Springer, Berlin, 1999)

    Book  Google Scholar 

  21. J. Grasman, B.J. Matkowsky, A variational approach to singularly perturbed boundary value problems for ordinary and partial differential equations with turning points. SIAM J. Appl. Math. 32, 588–597 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. P.P.N. de Groen, The nature of resonance in a singular perturbation problem of turning point type. SIAM J. Math. Anal. 11, 1–22 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. P.P.N. de Groen, The singularly perturbed turning point problem: A spectral analysis, in Singular Perturbations and Asymptotics, ed. by R.E. Meyer, S.V. Parter (Academic Press, New York, 1980), pp. 149–172

    Chapter  Google Scholar 

  24. J. Hadamard, An Essay on the Psychology of Invention in the Mathematical Field (Princeton University Press, Princeton, NJ, 1945)

    Google Scholar 

  25. P.W. Hemker, A Numerical Study of Stiff Two-Point Boundary Value Problems (Mathematical Centre, Amsterdam, 1977)

    Google Scholar 

  26. M.H. Holmes, Introduction to Perturbation Methods, 2nd edn. (Springer, New York, 2013)

    Book  MATH  Google Scholar 

  27. M. Holzer, T.J. Kaper, An analysis of the renormalization group method for asymptotic expansions with logarithmic switchback terms. Adv. Differ. Equ. 19(3/4), 245–282 (2014)

    MATH  MathSciNet  Google Scholar 

  28. E.M. de Jager, Jiang Furu, The Theory of Singular Perturbations (Elsevier, Amsterdam, 1996)

    Google Scholar 

  29. G.C. Kember, A.C. Fowler, J.D. Evans, S.G.B. O’Brien, Exponential asymptotics with a small exponent. Quart. Appl. Math. LVIII(3), 561–576 (2000)

    Google Scholar 

  30. H.-O. Kreiss, S.V. Parter, Remarks on singular perturbations with turning points. SIAM J. Math. Anal. 5, 230–251 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  31. J.G.L. Laforgue, Odd-order turning point: Resonance and dynamic metastability, in III Coloquio sobre Ecuaciones Diferenciales y Aplicaciones, Volumen II, ed. by A. Domingo Rueda, J. Guinez (Universidad del Zulia, Maracaibo, 1997) pp. 17–23

    Google Scholar 

  32. N.R. Lebovitz, R.J. Schaar, Exchange of stabilities in autonomous systems. Stud. Appl. Math. 54, 229–260 (1975)

    MATH  MathSciNet  Google Scholar 

  33. J.-W. Lee, M.J. Ward, On the asymptotic and numerical analysis of exponentially ill-conditioned singularly perturbed boundary value problems. Stud. Appl. Math. 94, 271–326 (1995)

    MATH  MathSciNet  Google Scholar 

  34. P. Lin, A numerical method for quasilinear singular perturbation problems with turning points. Computing 46, 155–164 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Lin, R.E. O’Malley, Jr., The numerical solution of a challenging class of turning point problems. SIAM J. Sci. Comput. 25, 927–941 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. A.D. MacGillivray, A method for incorporating transcendentally small terms into the method of matched asymptotic expansions. Stud. Appl. Math. 99, 285–310 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. J.J. Mahony, J.J. Shepherd, Stiff systems of ordinary differential equations. II. boundary value problems for completely stiff systems. J. Aust. Math. Soc. B 23, 136–172 (1981–1982)

    MathSciNet  Google Scholar 

  38. B.J. Matkowsky, On boundary layer problems exhibiting resonance. SIAM Rev. 17, 82–100 (1975)

    Article  MathSciNet  Google Scholar 

  39. W.L. Miranker, Numerical Methods for Stiff Equations and Singular Perturbation Methods (D. Reidel, Dordrecht, 1981)

    MATH  Google Scholar 

  40. E.F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic Methods in Singularly Perturbed Systems (Consultants Bureau, New York, 1994)

    Book  MATH  Google Scholar 

  41. N.N. Nefedov, K.R. Schneider, On immediate delayed exchange of stabilities and periodic forced canards. Comput. Math. Math. Phys 48(1), 43–58 (2008)

    Article  MathSciNet  Google Scholar 

  42. A.B. Olde Daalhuis, S.J. Chapman, J.R. King, J.R. Ockendon, R.H. Tew, Stokes phenomena and matched asymptotic expansions. SIAM J. Appl. Math. 55, 1469–1483 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  43. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  44. R.E. O’Malley, Jr., On boundary value problems for a singularly perturbed equation with a turning point. SIAM J. Math. Anal. 1, 479–490 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  45. R.E. O’Malley, Jr., Introduction to Singular Perturbations (Academic Press, New York, 1974)

    MATH  Google Scholar 

  46. R.E. O’Malley, Jr., Mahony’s intriguing stiff equations. J. Aust. Math. Soc. B 40, 469–474 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  47. R.E. O’Malley, Jr., Singularly perturbed linear two-point boundary value problems. SIAM Rev. 50, 459–482 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. C.E. Pearson, On a differential equation of boundary layer type. J. Math. and Phys. 47, 134–154 (1968)

    MATH  MathSciNet  Google Scholar 

  49. C.E. Pearson, On nonlinear ordinary differential equations of boundary layer type. J. Math. and Phys. 47, 351–358 (1968)

    MATH  MathSciNet  Google Scholar 

  50. R.B. Platte, L.N. Trefethen, Chebfun: A new kind of numerical computing, in Progress in Industrial Mathematics at ECMI 2008, ed. by A.D. Fitt et al. (Springer, Berlin, 2010), pp. 69–82

    Google Scholar 

  51. J.-P. Ramis, Séries divergentes et théories asymptotiques. In Panoramas et Synthèses, vol. 121 (Soc. Math. France, Paris, 1993), pp. 1–74

    Google Scholar 

  52. Z. Schuss, Theory and Application of Stochastic Processes: An Analytical Approach (Springer, New York, 2010)

    Book  Google Scholar 

  53. H. Segur, S. Tanveer, H. Levine (eds.), Asymptotics Beyond All Orders (Plenum, New York, 1991)

    MATH  Google Scholar 

  54. M.A. Shishkova, A discussion of a certain system of differential equations with a small coefficient of the highest-order derivatives. Soviet Math. Dokl. 14, 483–487 (1973)

    MATH  Google Scholar 

  55. Y. Sibuya, Uniform simplification in a full neighborhood of a transition point. Memoirs Am. Math. Soc. 149, vi–106 (1974)

    Google Scholar 

  56. Y. Sibuya, A theorem concerning uniform simplification at a transition point and a problem of resonance. SIAM J. Math. Anal. 12, 653–668 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  57. V. Sobolev, Canard cascades in biological models. Talk given at Nonlinear Dynamics Workshop in Memory of Alexei Pokrovskii, University College Cork, Ireland, 2011

    Google Scholar 

  58. F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics (Springer, New York, 2005)

    Book  Google Scholar 

  59. F. Verhulst, Hunting French ducks in population dynamics. Proceedings, 12th Conference on Dynamical Systems Theory and Applications, Łódz (Wydawnictwo Politechniki Łódzkie, Łódz, Poland, 2013)

    Google Scholar 

  60. W. Wasow, Linear Turning Point Theory (Springer, New York, 1985)

    Book  MATH  Google Scholar 

  61. R.B. White, Asymptotic Analysis of Differential Equations (Imperial College Press, London, 2010)

    Book  MATH  Google Scholar 

  62. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

O’Malley, R.E. (2014). Wendepunkts and Canards (Turning Points and Delayed Bifurcations). In: Historical Developments in Singular Perturbations. Springer, Cham. https://doi.org/10.1007/978-3-319-11924-3_4

Download citation

Publish with us

Policies and ethics