Skip to main content

Intraoperative Neurophysiological Monitoring in Posterior Fossa Surgery

  • Chapter
Posterior Fossa Tumors in Children

Abstract

Surgical treatment of pediatric posterior fossa tumors has undergone many changes in the past century. The advent of operative magnification and ultrasonic surgical aspirator coupled with the introduction and refinement of MRI technology and with the advances in neuroanesthesia and neurointensive care has facilitated the resection of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 349.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aarsen FK, Van Dongen H, Paquier PF, Van Mourik M, Catsman-Berrevoets CE (2004) Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology 62:1311–1316

    Article  CAS  PubMed  Google Scholar 

  2. Abbott R (1996) Brain stem glioma. In: McLone DG (ed) Pediatric neurosurgery: surgery of the developing nervous system. WB Saunders, Philadelphia, pp 859–867

    Google Scholar 

  3. Abbott R (2009) The use of physiological mapping and monitoring during surgery for ependymomas. Childs Nerv Syst 25:1241–1247

    Article  PubMed  Google Scholar 

  4. Abbott R, Shiminski-Maher T, Epstein FJ (1996) Intrinsic tumor of the medulla: predicting outcome after surgery. Pediatr Neurosurg 25:41–44

    Article  CAS  PubMed  Google Scholar 

  5. Akagami R, Dong CC, Westerberg BD (2005) Localized transcranial electrical motor evoked potentials for monitoring cranial nerves in cranial base surgery. Neurosurgery 57:78–85

    Article  PubMed  Google Scholar 

  6. Armand J, Olivier E, Edgley SA, Lemon RN (1996) The structure and function of the developing corticospinal tract: some key issues. In: Wing AM, Aggard P, Lanagan JR (eds) Hand and brain. Academic Press, San Diego, pp 125–145

    Chapter  Google Scholar 

  7. Blessing W (1997) The lower brainstem and bodily homeostasis. Oxford University Press, New York

    Google Scholar 

  8. Bricolo A (2000) Surgical management of intrinsic brain stem gliomas. Oper Tech Neurosurg 3:137–154

    Article  Google Scholar 

  9. Burke D, Hicks RG, Stephen JPH (1990) Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex. J Physiol 425:283–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cochrane DD, Gustavsson B, Poskitt KP, Steinbok P, Kestle JRW (1994) The surgical and natural morbidity of aggressive resection for posterior fossa tumors in childhood. Pediatr Neurosurg 20:19–29

    Article  CAS  PubMed  Google Scholar 

  11. Cushing H (1931) Experience with cerebellar astrocytomas. A critical review of seventy-six cases. Surg Gynecol Obstet 52:129–204

    Google Scholar 

  12. Deletis V, Kothbauer K (1998) Intraoperative neurophysiology of the corticospinal tract. In: Stålberg E, Sharma HS, Olsson Y (eds) Spinal cord monitoring. Springer, Vienna, pp 421–444

    Chapter  Google Scholar 

  13. Deletis V, Sala F, Morota N (2000) Intraoperative neurophysiological monitoring and mapping during brain stem surgery: a modern approach. Oper Tech Neurosurg 3:109–113

    Article  Google Scholar 

  14. DiCindio S, Theroux M, Shah S, Miller F, Dabney K, Brislin RP, Schwartz D (2003) Multimodality monitoring of transcranial electric motor and somatosensory-evoked potentials during surgical correction of spinal deformity in patients with cerebral palsy and other neuromuscular disorders. Spine (Phila Pa 1976) 28:1851–1855; discussion 1855–1856

    Article  Google Scholar 

  15. Dong CC, MacDonald DB, Akagami R, Westerberg B, Alkhani A, Kanaan I, Hassounah M (2005) Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 116:588–596

    Article  PubMed  Google Scholar 

  16. Due-Tonnessen B, Helseth E, Scheibe D, Skullerud K, Aamondt G, Lundar T (2002) Long term outcome after resection of benign cerebellar astrocytoma in children and young adults (0–19): report of 110 consecutive cases. Pediatr Neurosurg 37:71–80

    Article  PubMed  Google Scholar 

  17. Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP, Van Effenterre R, Capelle L (2005) Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 76:845–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Duffau H, Sichez JP (1998) Intraoperative direct electrical stimulation of the lamina quadrigemina in a case of a deep tectal cavernoma. Acta Neurochir (Wien) 140:1309–1312

    Article  CAS  Google Scholar 

  19. Eisner W, Schmid UD, Reulen HJ, Oeckler R, Olteanu-Nerbe V, Gall C, Kothbauer K (1995) The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery. Neurosurgery 37:255–265

    Article  CAS  PubMed  Google Scholar 

  20. Erickson L, Costa V, McGregor M (2005) Use of intraoperative neurophysiological monitoring during spinal surgery. McGill University Health Centre; Springer: Wien

    Google Scholar 

  21. Fukaya C, Katayama Y, Kasai M, Kurihara J, Yamamoto T (1999) Intraoperative electrooculographic monitoring of oculomotor nerve function during skull base surgery. Technical note. J Neurosurg 91:157–159

    Article  CAS  PubMed  Google Scholar 

  22. Grabb PA, Albright L, Sclabassi RJ, Pollack IF (1997) Continuous intraoperative electromyographic monitoring of cranial nerves during resection of fourth ventricular tumors in children. J Neurosurg 86:1–4

    Article  CAS  PubMed  Google Scholar 

  23. Hoffman HJ, Becker L, Craven MA (1980) A clinically and pathologically distinct group of benign brain stem gliomas. Neurosurgery 7:243–248

    Article  CAS  PubMed  Google Scholar 

  24. Humphreys RP (1982) Posterior cranial fossa brain tumors in children. In: Youmans JR (ed) Neurological surgery. Saunders, Philadelphia, pp 2733–2752

    Google Scholar 

  25. Ishihara H, Bjeljac M, Straumann D, Kaku Y, Roth P, Yonekawa Y (2006) The role of intraoperative monitoring of oculomotor and trochlear nuclei -safe entry zone to tegmental lesions. Minim Invasive Neurosurg 49:168–172

    Article  CAS  PubMed  Google Scholar 

  26. Jallo GI, Biser-Rohrbaugh A, Freed D (2004) Brainstem gliomas. Childs Nerv Syst 20:143–153

    Article  PubMed  Google Scholar 

  27. Jallo GI, Shiminski-Maher T, Velazquez L, Abbott R, Wisoff J, Epstein F (2005) Recovery of lower cranial nerve function after surgery for medullary brainstem tumors. Neurosurgery 56:74–78

    PubMed  Google Scholar 

  28. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA (1996) Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol 100:375–383

    Article  CAS  PubMed  Google Scholar 

  29. Katayama Y, Tsubokawa T, Maemjima S, Hirayama T, Yamamoto T (1988) Corticospinal direct response in humans: identification of the motor cortex during intracranial surgery under general anesthesia. J Neurol Neurosurg Psychiatry 51:50–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kothbauer KF, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4:e1, Article 1

    CAS  PubMed  Google Scholar 

  31. Kubis N, Catala M (2003) Development and maturation of the pyramidal tract. Neurochirurgie 49:145–153

    CAS  PubMed  Google Scholar 

  32. Kyoshima K, Kobayashi S, Gibo H, Kuroyanagi T (1993) A study of safe entry zones via the floor of the fourth ventricle for brain-stem lesions. Report of three cases. J Neurosurg 78:987–993

    Article  CAS  PubMed  Google Scholar 

  33. Lalwani AK, Butt FY, Jackler RK, Pitts LH, Yingling CD (1994) Facial nerve outcome after acoustic neuroma surgery: a study from the era of cranial nerve monitoring. Otolaryngol Head Neck Surg 111:561–570

    Article  CAS  PubMed  Google Scholar 

  34. Lang J Jr, Ohmachi N, Lang J Sr (1991) Anatomical landmarks of the rhomboid fossa (floor of the 4th ventricle), its length and its width. Acta Neurochir (Wien) 113:84–90

    Article  Google Scholar 

  35. Langeloo DD, Journee HL, Polak B, de Kleuver M (2001) A new application of TCE-MEP: spinal cord monitoring in patients with severe neuromuscular weakness undergoing corrective spine surgery. J Spinal Disord 14:445–448

    Article  CAS  PubMed  Google Scholar 

  36. Legatt AD (2008) BAEPs in surgery. In: Nuwer MR (ed) Intraoperative monitoring of neural function. Handbook of clinical neurophysiology. Elsevier, Amsterdam, pp 334–349

    Chapter  Google Scholar 

  37. Lieberman JA, Lyon R, Feiner J, Diab M, Gregory GA (2006) The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg 103:316–321, table of contents

    Article  CAS  PubMed  Google Scholar 

  38. MacDonald DB (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19:416–429

    Article  PubMed  Google Scholar 

  39. May PL, Blaser SI, Hoffman HJ, Humphreys RP, Harwood-Nash DC (1991) Benign intrinsic tectal “tumors” in children. J Neurosurg 74:867–871

    Article  CAS  PubMed  Google Scholar 

  40. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227

    Article  CAS  PubMed  Google Scholar 

  41. Morota N, Deletis V, Epstein FJ, Kofler M, Abbott R, Lee M, Ruskin K (1995) Brain stem mapping: neurophysiological localization of motor nuclei on the floor of the fourth ventricle. Neurosurgery 37:922–930

    Article  CAS  PubMed  Google Scholar 

  42. Morota N, Deletis V, Lee M, Epstein FJ (1996) Functional anatomic relationship between brain-stem tumors and cranial motor nuclei. Neurosurgery 39:787–793; discussion 793–784

    Article  CAS  PubMed  Google Scholar 

  43. Morris EB, Li C, Khan RB, Sanford RA, Boop F, Pinlac R, Xiong X, Merchant TE (2009) Evolution of neurological impairment in pediatric infratentorial ependymoma patients. J Neurooncol 94:391–398

    Article  PubMed Central  PubMed  Google Scholar 

  44. Muller K, Homberg V, Lenard HG (1991) Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol 81:63–70

    Article  CAS  PubMed  Google Scholar 

  45. Neervoort FW, Van Ouwekerk W, Folkersma H, Kaspers GJL, Vandertop WP (2010) Surgical morbidity and mortality of pediatric brain tumors: a single center audit. Childs Nerv Syst 26:1583–1592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Neuloh G, Pechstein U, Cedzich C, Schramm J (2004) Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 54:1061–1070

    Article  PubMed  Google Scholar 

  47. Nezu A, Kimura S, Takeshita S (1999) Topographical differences in the developmental profile of central motor conduction time. Clin Neurophysiol 110:1646–1649

    Article  CAS  PubMed  Google Scholar 

  48. Olivier E, Edgley SA, Armand J, Lemon RN (1997) An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey. J Neurosci 17:267–276

    CAS  PubMed  Google Scholar 

  49. Patton HD, Amassian VE (1954) Single-and multiple unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17:345–363

    CAS  PubMed  Google Scholar 

  50. Pechstein U, Cedzich C, Nadstawek J, Schramm J (1996) Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 39:335–344

    Article  CAS  PubMed  Google Scholar 

  51. Pompili A, Caperle M, Pace A, Ramazzotti V, Raus L, Jandolo B, Occhipinti E (2002) Quality-of-life assessment in patients who had been surgically treated for cerebellar pilocytic astrocytoma in childhood. J Neurosurg 96:229–234

    Article  PubMed  Google Scholar 

  52. Prell J, Rampp S, Romstock J, Fahlbusch R, Strauss C (2007) Train time as a quantitative electromyographic parameter for facial nerve function in patients undergoing surgery for vestibular schwannoma. J Neurosurg 106:826–832

    Article  PubMed  Google Scholar 

  53. Recinos PF, Sciubba DM, Jallo GI (2007) Brainstem tumors: where are we today? Pediatr Neurosurg 43:192–201

    Article  PubMed  Google Scholar 

  54. Reithmeier T, Krammer M, Gumprecht H, Gerstner W, Lumenta CB (2003) Neuronavigation combined with electrophysiological monitoring for surgery of lesions in eloquent brain areas in 42 cases: a retrospective comparison of the neurological outcome and the quality of resection with a control group with similar lesions. Minim Invasive Neurosurg 46:65–71

    Article  CAS  PubMed  Google Scholar 

  55. Rhoton AL (2000) The posterior fossa veins. Neurosurgery 47:S69–S92

    Article  PubMed  Google Scholar 

  56. Ribi K, Relly C, Landolt MA, Alber FD, Boltshauser E, Grotzer MA (2005) Outcome of medulloblastoma in children: long term complications and quality of life. Neuropediatrics 36:357–365

    Article  CAS  PubMed  Google Scholar 

  57. Romstock J, Strauss C, Fahlbusch R (2000) Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg 93:586–593

    Article  CAS  PubMed  Google Scholar 

  58. Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M (1994) Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol 481(Pt 1):243–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Sala F (2010) Intraoperative neurophysiology is here to stay. Childs Nerv Syst 26:413–417

    Article  PubMed  Google Scholar 

  60. Sala F, Krzan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18:264–287

    Article  PubMed  Google Scholar 

  61. Sala P, Lanteri A, Bricolo (2004) Motor evoked potential monitoring for spinal cord and brainstem surgery. In: Dolenc VV, Lobo J, Antunes HJ, Reulen M, Sindou AJ, Strong N, de Tribolet CA, Tulleken F, Vapalahti M (eds). Advanced and technical standards in neurosurgery. Vol.29. Pickard JD (Editor in Chief), pp 133–169

    Google Scholar 

  62. Sala F, Manganotti P, Grossauer S, Tramontano V, Mazza C, Gerosa M (2010) Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 26:473–490

    Article  PubMed  Google Scholar 

  63. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58:1129–1143; discussion 1129–1143

    Article  PubMed  Google Scholar 

  64. Schlake HP, Goldbrunner R, Siebert M, Behr R, Roosen K (2001) Intra-Operative electromyographic monitoring of extra-ocular motor nerves (Nn. III, VI) in skull base surgery. Acta Neurochir 143:251–261

    Article  CAS  PubMed  Google Scholar 

  65. Sekiya T, Hatayama T, Shimamura N, Suzuki S (2000) Intraoperative electrophysiological monitoring of oculomotor nuclei and their intramedullary tracts during midbrain tumor surgery. Neurosurgery 47:1170–1176; discussion 1176–1177

    Article  CAS  PubMed  Google Scholar 

  66. Sloan TB (2002) Intraoperative neurophysiology and anesthesia management. In: Deletis V, Shils J (eds) Neurophysiology in neurosurgery: a modern intraoperative approach. Academic, San Diego, pp 451–474

    Chapter  Google Scholar 

  67. Strauss C, Lutjen-Drecoll E, Fahlbusch R (1997) Pericollicular surgical approaches to the rhomboid fossa. Part I. Anatomical basis. J Neurosurg 87:893–899

    Article  CAS  PubMed  Google Scholar 

  68. Sughrue ME, Kaur R, Kane AJ, Rutkowski MJ, Kaur G, Yang I, Pitts LH, Parsa AT (2010) The value of intraoperative facial nerve electromyography in predicting facial nerve function after vestibular schwannoma surgery. J Clin Neurosci 17:849–852

    Article  PubMed  Google Scholar 

  69. Szelenyi A, Bueno de Camargo A, Deletis V (2003) Neurophysiological evaluation of the corticospinal tract by D-wave recordings in young children. Childs Nerv Syst 19:30–34

    PubMed  Google Scholar 

  70. Tanaka S, Takanashi J, Fujii K, Ujiie H, Hori T (2007) Motor evoked potential mapping and monitoring by direct brainstem stimulation. Technical note. J Neurosurg 107:1053–1057

    Article  PubMed  Google Scholar 

  71. Taniguchi M, Cedzich C, Schramm J (1993) Modification of cortical stimulation for motor evoked potentials under general anesthesia; technical description. Neurosurgery 32:219–226

    Article  CAS  PubMed  Google Scholar 

  72. Vandertop WP, Hoffman HJ, Drake JM, Humphreys RP, Rutka JT, Amstrong DC, Becker LE (1992) Focal midbrain tumors in children. Neurosurgery 31:186–194

    Article  CAS  PubMed  Google Scholar 

  73. Wilson-Holden TJ, Padberg AM, Lenke LG, Larson BJ, Bridwell KH, Bassett GS (1999) Efficacy of intraoperative monitoring for pediatric patients with spinal cord pathology undergoing spinal deformity surgery. Spine (Phila Pa 1976) 24:1685–1692

    Article  CAS  Google Scholar 

  74. Woodforth IJ, Hicks RG, Crawford MR, Stephen JP, Burke DJ (1996) Variability of motor-evoked potentials recorded during nitrous oxide anesthesia from the tibialis anterior muscle after transcranial electrical stimulation. Anesth Analg 82:744–749

    CAS  PubMed  Google Scholar 

  75. Zuzak TJ, Poretti A, Drexel B, Zehnder D, Boltshauser E, Grotzer MA (2008) Outcome of children with low grade cerebellar astrocytoma: long term complications and quality of life. Childs Nerv Syst 24:1447–1455

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sala M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sala, F., Gallo, P., Tramontano, V., Gerosa, M. (2015). Intraoperative Neurophysiological Monitoring in Posterior Fossa Surgery. In: Özek, M., Cinalli, G., Maixner, W., Sainte-Rose, C. (eds) Posterior Fossa Tumors in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-11274-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11274-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11273-2

  • Online ISBN: 978-3-319-11274-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics