Skip to main content

Advertisement

Log in

Intraoperative neurophysiology of the motor system in children: a tailored approach

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Intraoperative neurophysiology has moved giant steps forward over the past 15 years thanks to the advent of techniques aimed to reliably assess the functional integrity of motor areas and pathways.

Intraoperative neurophysiological techniques

Motor evoked potentials recorded from the muscles and/or the spinal cord (D-wave) after transcranial electrical stimulation allow to preserve the integrity of descending pathways, especially the corticospinal tract (CT), during brain and spinal cord surgery. Mapping techniques allow to identify the motor cortex through direct cortical stimulation and to localize the CT at subcortical levels during brain and brainstem surgery. These techniques are extensively used in adult neurosurgery and, in their principles, can be applied to children. However, especially in younger children, the motor system is still under development, making both mapping and monitoring techniques more challenging.

Summary

In this paper, we review intraoperative neurophysiological techniques commonly used in adult neurosurgery and discuss their application to pediatric neurosurgery, in the light of preliminary experience from our and other centers. The principles of development and maturation of the motor system, and especially of the CT, are reviewed focusing on clinical studies with transcranial magnetical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alvarez LA, Jayakar P (1990) Cortical stimulation with subdural electrodes: special considerations in infancy and childhood. J Epilepsy 3(Suppl):125–130

    Google Scholar 

  2. Armand J, Olivier E, Edgley SA, Lemon RN (1996) The structure and function of the developing corticospinal tract: some key issues. In: Wing AM, Aggard P, Lanagan JRE (eds) Hand and brain. Academic, San Diego, pp 125–145

    Google Scholar 

  3. Bartholow R (1874) Experimental investigations into the functions of the human brain. Am J Med Sci 67:305–313

    Google Scholar 

  4. Benifla M, Sala F, Jane J Jr, Otsubo H, Ochi A, Drake J, Weiss S, Donner E, Fujimoto A, Holowka S, Widjaja E, Snead OC 3rd, Smith ML, Tamber MS, Rutka JT (2009) Neurosurgical management of intractable rolandic epilepsy in children: role of resection in eloquent cortex. J Neurosurg Ped 4:199–216

    Google Scholar 

  5. Berger MS, Kincaid J, Ojemann GA, Lettich E (1989) Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors. Neurosurgery 25:786–792

    CAS  PubMed  Google Scholar 

  6. Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG (2007) Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg 107:488–494

    PubMed  Google Scholar 

  7. Blume WT, Jones DC, Pathak P (2004) Properties of after-discharges from cortical electrical stimulation in focal epilepsies. Clin Neurophysiol 115:982–989

    PubMed  Google Scholar 

  8. Branco DM, Coelho TM, Branco BM, Schmidt L, Calcagnotto ME, Portuguez M, Neto EP, Paglioli E, Palmini A, Lima JV, Da Costa JC (2003) Functional variability of the human cortical motor map: electrical stimulation findings in perirolandic epilepsy surgery. J Clin Neurophysiol 20:17–25

    PubMed  Google Scholar 

  9. Brody BA, Kinney CH, Kloman AS, Gilles FH (1997) Sequence of central nervous system myelination in human infancy. I. An autopsy study on myelination. J Neuropathol Exp Neurol 46:283–301

    Google Scholar 

  10. Burns Y, O’Callaghan M, McDonell B, Rogers Y (2004) Movement and motor development in ELBW infants at 1 year is related to cognitive and motor abilities at 4 years. Early Hum Dev 80:19–29

    PubMed  Google Scholar 

  11. Caramia MD, Desiato MT, Cicinelli P, Iani C, Rossini PM (1993) Latency jump of “relaxed” versus “contracted” motor evoked potentials as a marker of cortico-spinal maturation. Electroencephalogr Clin Neurophysiol 89:61–66

    CAS  PubMed  Google Scholar 

  12. Cedzich C, Taniguchi M, Schafer S, Schramm J (1996) Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38:962–970

    CAS  PubMed  Google Scholar 

  13. Chitoku S, Otsubo H, Harada Y, Jay V, Rutka JT, Weiss SK, Abdoll M, Snead OC 3rd (2001) Extraoperative cortical stimulation of motor function in children. Pediatr Neurol 24:344–350

    CAS  PubMed  Google Scholar 

  14. Cincotta M, Borgheresi A, Lori S, Fabbri M, Zaccara G (1998) Interictal inhibitory mechanisms in patients with cryptogenic motor cortex epilepsy: a study of the silent period following transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 107:1–7

    CAS  PubMed  Google Scholar 

  15. Cracco JB, Cracco RQ, Stolove R (1979) Spinal evoked potential in man: a maturational study. Electroencephalogr Clin Neurophysiol 46:58–64

    CAS  PubMed  Google Scholar 

  16. de Haan P, Kalkman CJ, de Mol BA, Ubags LH, Veldman DJ, Jacobs MJ (1997) Efficacy of transcranial motor-evoked myogenic potentials to detect spinal cord ischemia during operations for thoracoabdominal aneurysms. J Thorac Cardiovasc Surg 113:87–100, discussion 100–101

    PubMed  Google Scholar 

  17. de Haan P, Kalkman CJ, Ubags LH, Jacobs MJ, Drummond JC (1996) A comparison of the sensitivity of epidural and myogenic transcranial motor-evoked responses in the detection of acute spinal cord ischemia in the rabbit. Anesth Analg 83:1022–1027

    PubMed  Google Scholar 

  18. Deletis V, Bueno De Camargo A (2001) Interventional neurophysiological mapping during spinal cord procedures. Stereotact Funct Neurosurg 77:25–28

    CAS  PubMed  Google Scholar 

  19. Deletis V, Kothbauer K (1998) Intraoperative neurophysiology of the corticospinal tract. In: Stålberg E, Sharma HS, Olsson Y (eds) Spinal cord monitoring. Springer, Vienna, pp 421–444

    Google Scholar 

  20. Deletis V, Rodi Z, Amassian VE (2001) Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2. Relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol 112:445–452

    CAS  PubMed  Google Scholar 

  21. Deletis V, Sala F (2008) Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol 119:248–264

    PubMed  Google Scholar 

  22. Deletis V, Sala F, Morota N (2000) Intraoperative neurophysiological monitoring and mapping during brain stem surgery: a modern approach. Op Tech Neurosurg 3:109–113

    Google Scholar 

  23. DiCindio S, Theroux M, Shah A, Miller F, Dabney K, Brislin RP, Schwartz D (2003) Multimodality monitoring of transcranial electric motor and somatosensory-evoked potentials during surgical correction of spinal deformity in patients with cerebral palsy and other neuromuscular disorders. Spine 28:1851–1856

    PubMed  Google Scholar 

  24. Duchowny M, Jayakar P (1993) Functional cortical mapping in children. In: Devinsky O, Beric A, Dogali M (eds) Electrical and magnetic stimulation of the brain and spinal cord. Raven, New York, pp 149–154

    Google Scholar 

  25. Duffau H (2004) Cartographie fonctionnelle per-operatoire par stimulations electriques directes. Neurochirurgie 50:474–483

    CAS  PubMed  Google Scholar 

  26. Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Taillandier L, Lopes M, Mitchell MC, Roche S, Muller JC, Bitar A, Sichez JP, Effenterre R (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98:764–778

    PubMed  Google Scholar 

  27. Duffau H, Lopes M, Sichez JP, Bitar A, Capelle L (2003) A new device for electrical stimulation mapping of the brainstem and spinal cord. Minim Invasive Neurosurg 46:61–64

    CAS  PubMed  Google Scholar 

  28. Eyre JA (2003) Development and plasticity of the corticospinal system in man. Neural Plast 10:93–106

    CAS  PubMed  Google Scholar 

  29. Eyre JA, Miller S, Clowry GJ (2002) The development of the corticospinal tract in humans. In: Pascual-Leone A, Davey NJ, Rothwell J, Wassermann EM, Puri BKE (eds) Handbook of transcranial magnetic stimulation. Arnold, London, pp 235–249

    Google Scholar 

  30. Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C (2000) Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123(Pt 1):51–64

    PubMed  Google Scholar 

  31. Eyre JA, Taylor JP, Villagra F, Smith M, Miller S (2001) Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology 57:1543–1554

    CAS  PubMed  Google Scholar 

  32. Fietzek UM, Heinen F, Berweck S, Maute S, Hufschmidt A, Schulte-Monting J, Lucking CH, Korinthenberg R (2000) Development of the corticospinal system and hand motor function: central conduction times and motor performance tests. Dev Med Child Neurol 42:220–227

    CAS  PubMed  Google Scholar 

  33. Frei FJ, Ryhult SE, Duitmann E, Hasler CC, Luetschg J, Erb TO (2007) Intraoperative monitoring of motor-evoked potentials in children undergoing spinal surgery. Spine 32:911–917

    PubMed  Google Scholar 

  34. Frye RE, Rotenberg A, Ousley M, Pascual-Leone A (2008) Transcranial magnetic stimulation in child neurology: current and future directions. J Child Neurol 23:79–96

    PubMed  Google Scholar 

  35. Fujiki M, Furukawa Y, Kamida T, Anan M, Inoue R, Abe T, Kobayashi H (2006) Intraoperative corticomuscular motor evoked potentials for evaluation of motor function: a comparison with corticospinal D and I waves. J Neurosurg 104:85–92

    PubMed  Google Scholar 

  36. Gallentine WB, Mikati MA (2009) Intraoperative electrocorticography and cortical stimulation in children. J Clin Neurophysiol 26:95–108

    PubMed  Google Scholar 

  37. Garvey MA, Ziemann U, Bartko JJ, Denckla MB, Barker CA, Wassermann EM (2003) Cortical correlates of neuromotor development in healthy children. Clin Neurophysiol 114:1662–1670

    CAS  PubMed  Google Scholar 

  38. Ginsburg HH, Shetter AG, Raudzens PA (1985) Postoperative paraplegia with preserved intraoperative somatosensory evoked potentials. J Neurosurg 63:296–300

    CAS  PubMed  Google Scholar 

  39. Goldring S (1978) A method for surgical management of focal epilepsy, especially as it relates to children. J Neurosurg 49:344–356

    CAS  PubMed  Google Scholar 

  40. Goldring S, Gregorie EM (1984) Surgical management of epilepsy using epidural recordings to localize the seizure focus. Review of 100 cases. J Neurosurg 60:457–466

    CAS  PubMed  Google Scholar 

  41. Gupta N, Berger MS (2003) Brain mapping for hemispheric tumors in children. Pediatr Neurosurg 38:302–306

    PubMed  Google Scholar 

  42. Hagan DM, Lisgo S, Strachan T, Davidson D, Baldock R, Stark M (1999) Mapping gene expression domains and neuronal cell differentiation during human embryonic forebrain development. Am J Hum Genet 65:403

    Google Scholar 

  43. Haglund MM, Ojemann GA, Blasdel GG (1993) Optical imaging of bipolar cortical stimulation. J Neurosurg 78:785–793

    CAS  PubMed  Google Scholar 

  44. Haseeb A, Asano E, Juhasz C, Shah A, Sood S, Chugani HT (2007) Young patients with focal seizures may have the primary motor area for the hand in the postcentral gyrus. Epilepsy Res 76:131–139

    PubMed  Google Scholar 

  45. Heinen F, Fietzek UM, Berweck S, Hufschmidt A, Deuschl G, Korinthenberg R (1998) Fast corticospinal system and motor performance in children: conduction proceeds skill. Pediatr Neurol 19:217–221

    CAS  PubMed  Google Scholar 

  46. Humphrey T (1960) The development of the pyramidal tracts in human fetuses correlated with cortical differentiation. In: Tower DB, Schade JB (eds) Structure and function of the cortex: proceedings of the second international meeting of neuro-biologists. Elsevier, Amsterdam, pp 93–103

    Google Scholar 

  47. Inghilleri M, Mattia D, Berardelli A, Manfredi M (1998) Asymmetry of cortical excitability revealed by transcranial stimulation in a patient with focal motor epilepsy and cortical myoclonus. Electroencephalogr Clin Neurophysiol 109:70–72

    CAS  PubMed  Google Scholar 

  48. Jankowska E, Padel Y, Tanaka R (1975) Projections of pyramidal tract cells to alpha-motoneurones innervating hind-limb muscles in the monkey. J Physiol 249:637–667

    CAS  PubMed  Google Scholar 

  49. Jayakar P (1993) Physiological principles of electrical stimulation. Raven, New York

    Google Scholar 

  50. Jayakar P, Alvarez LA, Duchowny MS, Resnick TJ (1992) A safe and effective paradigm to functionally map the cortex in childhood. J Clin Neurophysiol 9:288–293

    CAS  PubMed  Google Scholar 

  51. Jones SJ, Buonamassa S, Crockard HA (2003) Two cases of quadriparesis following anterior cervical discectomy, with normal perioperative somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 74:273–276

    CAS  PubMed  Google Scholar 

  52. Journee HL, Hoving E, Mooij J (2006) Stimulation threshold–age relationship and improvement of muscle potentials by preconditioning transcranial stimulation in young children. Clin Neurophysiol 117:115

    Google Scholar 

  53. Journee HL, Polak HE, de Kleuver M (2004) Influence of electrode impedance on threshold voltage for transcranial electrical stimulation in motor evoked potential monitoring. Med Biol Eng Comput 42:557–561

    CAS  PubMed  Google Scholar 

  54. Journee HL, Polak HE, De Kleuver M, Langeloo DD, Postma AA (2004) Improved neuromonitoring during spinal surgery using double-train transcranial electrical stimulation. Med Biol Eng Comput 42:110–113

    CAS  PubMed  Google Scholar 

  55. Kakimoto M, Kawaguchi M, Yamamoto Y, Inoue S, Horiuchi T, Nakase H, Sakaki T, Furuya H (2005) Tetanic stimulation of the peripheral nerve before transcranial electrical stimulation can enlarge amplitudes of myogenic motor evoked potentials during general anesthesia with neuromuscular blockade. Anesthesiology 102:733–738

    PubMed  Google Scholar 

  56. Kakinohana M, Nakamura S, Fuchigami T, Sugahara K (2007) Transcranial motor-evoked potentials monitoring can detect spinal cord ischemia more rapidly than spinal cord-evoked potentials monitoring during aortic occlusion in rats. Eur Spine J 16:787–793

    PubMed  Google Scholar 

  57. Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS (2004) Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: Evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100:369–375

    PubMed  Google Scholar 

  58. Koh TH, Eyre JA (1988) Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex. Arch Dis Child 63:1347–1352

    CAS  PubMed  Google Scholar 

  59. Kombos T, Kopetsch O, Suess O, Brock M (2003) Does preoperative paresis influence intraoperative monitoring of the motor cortex? J Clin Neurophysiol 20:129–134

    PubMed  Google Scholar 

  60. Kombos T, Suess O, Ciklatekerlio O, Brock M (2001) Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex. J Neurosurg 95:608–614

    CAS  PubMed  Google Scholar 

  61. Kombos T, Suess O, Kern BC, Funk T, Hoell T, Kopetsch O, Brock M (1999) Comparison between monopolar and bipolar electrical stimulation of the motor cortex. Acta Neurochir (Wien) 141:1295–1301

    CAS  Google Scholar 

  62. Kothbauer K, Deletis V, Epstein FJ (1997) Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Pediatr Neurosurg 26:247–254

    CAS  PubMed  Google Scholar 

  63. Kothbauer K, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4:Article 1

    Google Scholar 

  64. Kubis N, Catala M (2003) Development and maturation of the pyramidal tract. Neurochirurgie 49:145–153

    CAS  PubMed  Google Scholar 

  65. Kutschera J, Tomaselli J, Maurer U, Pichler G, Schwantzer G, Urlesberger B (2006) Minor neurological dysfunction, cognitive development and somatic development at the age of 3 to 11 years in very-low-birthweight infants with transient periventricular echodensities. Acta Paediatr 95:1577–1581

    PubMed  Google Scholar 

  66. Langeloo DD, Journee HL, Polak B, de Kleuver M (2001) A new application of TCE-MEP: spinal cord monitoring in patients with severe neuromuscular weakness undergoing corrective spine surgery. J Spinal Disord 14:445–448

    CAS  PubMed  Google Scholar 

  67. Lesser RP, Luders HO, Klem G, Dinner DS, Morris HH, Hahn J (1984) Cortical afterdischarge and functional response thresholds: results of extraoperative testing. Epilepsia 25:615–621

    CAS  PubMed  Google Scholar 

  68. Lesser RP, Raudzens P, Lüders H, Nuwer MR, Goldie WD, Morris HH, Dinner DS, Klem G, Hahn JF, Shetter AG, Ginsburg HH, Gurd AR (1986) Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 19:22–25

    CAS  PubMed  Google Scholar 

  69. Liebermann A, Jeremy LR, Diab M, Gregory AG (2006) The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg 103:316–321

    Google Scholar 

  70. MacDonald DB (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19:416–429

    PubMed  Google Scholar 

  71. MacDonald DB, Janusz M (2002) An approach to intraoperative neurophysiologic monitoring of thoracoabdominal aneurysm surgery. J Clin Neurophysiol 19:43–54

    PubMed  Google Scholar 

  72. Macdonell RA, King MA, Newton MR, Curatolo JM, Reutens DC, Berkovic SF (2001) Prolonged cortical silent period after transcranial magnetic stimulation in generalized epilepsy. Neurology 57:706–708

    CAS  PubMed  Google Scholar 

  73. Mall V, Berweck S, Fietzek U, Glocker FX, Oberhuber U, Walther M, Schessl J, Schulte-Monting J, Korinthenberg R, Heinen F (2004) Low level of intracortical inhibition in children shown by transcranial magnetic stimulation. Neuropediatrics 35:120–125

    CAS  PubMed  Google Scholar 

  74. Manganotti P, Tamburin S, Zanette G, Fiaschi A (2001) Hyperexcitable cortical responses in progressive myoclonic epilepsy: a TMS study. Neurology 57:1793–1799

    CAS  PubMed  Google Scholar 

  75. Manganotti P, Zanette G (2000) Contribution of motor cortex in generation of evoked spikes in patients with benign rolandic epilepsy. Clin Neurophysiol 111:964–974

    CAS  PubMed  Google Scholar 

  76. Martin JH (2005) The corticospinal system: from development to motor control. Neuroscientist 11:161–173

    PubMed  Google Scholar 

  77. Masur H, Althoff S, Kurlemann G, Strater R, Oberwittler C (1995) Inhibitory period and late muscular responses after transcranial magnetic stimulation in healthy children. Brain Dev 17:149–152

    CAS  PubMed  Google Scholar 

  78. Meng Z, Li Q, Martin JH (2004) The transition from development to motor control function in the corticospinal system. J Neurosci 24:605–614

    CAS  PubMed  Google Scholar 

  79. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227

    CAS  PubMed  Google Scholar 

  80. Moll GH, Heinrich H, Wischer S, Tergau F, Paulus W, Rothenberger A (1999) Motor system excitability in healthy children: developmental aspects from transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:243–249

    CAS  PubMed  Google Scholar 

  81. Morota N, Deletis V, Constantini S, Kofler M, Cohrn H, Epstein FJ (1997) The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 41:1327–1336

    CAS  PubMed  Google Scholar 

  82. Muller K, Homberg V (1992) Development of speed of repetitive movements in children is determined by structural changes in corticospinal efferents. Neurosci Lett 144:57–60

    CAS  PubMed  Google Scholar 

  83. Muller K, Homberg V, Lenard HG (1991) Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol 81:63–70

    CAS  PubMed  Google Scholar 

  84. Muller K, Kass-Iliyya F, Reitz M (1997) Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation. Ann Neurol 42:705–711

    CAS  PubMed  Google Scholar 

  85. Murray GK, Veijola J, Moilanen K, Miettunen J, Glahn DC, Cannon TD, Jones PB, Isohanni M (2006) Infant motor development is associated with adult cognitive categorisation in a longitudinal birth cohort study. J Child Psychol Psychiatry 47:25–29

    CAS  PubMed  Google Scholar 

  86. Nespeca M, Wyllie E, Luders H et al (1990) EEG recording and functional localization studies with subdural electrodes in infants and young children. J Epilepsy 3(Suppl):107–124

    Google Scholar 

  87. Neuloh G, Bogucki J, Schramm J (2009) Intraoperative preservation of corticospinal function in the brainstem. J Neurol Neurosurg Psychiatry 80:417–422

    CAS  PubMed  Google Scholar 

  88. Neuloh G, Pechstein U, Cedzich C, Schramm J (2004) Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 54:1061–1070, discussion 1070–1062

    PubMed  Google Scholar 

  89. Nezu A, Kimura S, Ohtsuki N, Tanaka M (1997) Transcranial magnetic stimulation in benign childhood epilepsy with centro–temporal spikes. Brain Dev 19:134–137

    CAS  PubMed  Google Scholar 

  90. Nezu A, Kimura S, Takeshita S (1999) Topographical differences in the developmental profile of central motor conduction time. Clin Neurophysiol 110:1646–1649

    CAS  PubMed  Google Scholar 

  91. Nezu A, Kimura S, Uehara S, Kobayashi T, Tanaka M, Saito K (1997) Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application. Brain Dev 19:176–180

    CAS  PubMed  Google Scholar 

  92. Ojemann SG, Berger MS, Lettich E, Ojemann GA (2003) Localization of language function in children: results of electrical stimulation mapping. J Neurosurg 98:465–470

    PubMed  Google Scholar 

  93. Olivier E, Edgley SA, Armand J, Lemon RN (1997) An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey. J Neurosci 17:267–276

    CAS  PubMed  Google Scholar 

  94. O’Rahilly R, Muller F (1994) Human embryonic brain. An atlas of developmental stages. Wiley-Liss, New York

    Google Scholar 

  95. Patton HD, Amassian VE (1954) Single-and multiple unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17:345–363

    CAS  PubMed  Google Scholar 

  96. Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport JL, Evans AC (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911

    CAS  PubMed  Google Scholar 

  97. Pechstein U, Cedzich C, Nadstawek J, Schramm J (1996) Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 39:335–344

    CAS  PubMed  Google Scholar 

  98. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Google Scholar 

  99. Pouratian N, Cannestra AF, Bookheimer SY, Martin NA, Toga AW (2004) Variability of intraoperative electrocortical stimulation mapping parameters across and within individuals. J Neurosurg 101:458–466

    PubMed  Google Scholar 

  100. Quinones-Hinojosa A, Gulati M, Lyon R, Gupta N, Yingling C (2002) Spinal cord mapping as an adjunct for resection of intramedullary tumors: surgical technique with case illustrations. Neurosurgery 51:1199–1206, discussion 1206–1197

    PubMed  Google Scholar 

  101. Quinones-Hinojosa A, Lyon R, Du R, Lawton MT (2005) Intraoperative motor mapping of the cerebral peduncle during resection of a midbrain cavernous malformation: technical case report. Neurosurgery 56:E439, discussion E439

    PubMed  Google Scholar 

  102. Resnick TJ, Alvarez LA, Duchowny MS (1988) Cortical stimulation thresholds in children being evaluated for resective surgery. In: Annual Meeting of the American Epilepsy Society. Raven Press, San Francisco, California, pp 651–652

  103. Riviello JJ, Kull L, Troup C, Holmes GL (2001) Cortical stimulation in children: techniques and precautions. Tech Neurosurg 7:12–18

    Google Scholar 

  104. Romstock J, Fahlbusch R, Ganslandt O, Nimsky C, Strauss C (2002) Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 72:221–229

    CAS  PubMed  Google Scholar 

  105. Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M (1994) Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol 481(Pt 1):243–250

    CAS  PubMed  Google Scholar 

  106. Sala F, Kothbauer K (2008) Intraoperative neurophysiological monitoring during surgery for intramedullary spinal cord tumors. In: Nuwer MR (ed) Intraoperative monitoring of neural function. Elsevier, Amsteram, pp 632–650

    Google Scholar 

  107. Sala F, Krzan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18:264–287

    PubMed  Google Scholar 

  108. Sala F, Lanteri P, Bricolo A (2004) Intraoperative neurophysiological monitoring of motor evoked potentials during brain stem and spinal cord Surgery. In: Dolenc VV, Lobo Antunes J, Reulen HJ, Sindou M, Strong AJ, de Tribolet N, Tulleken CAF, Vapalahti M (eds) Advanced and technical standards in neurosurgery. Wien, Springer, pp 133–169

  109. Sala F, Lanteri P, Manganotti P, Pinna G, Talacchi A, Turazzi S, Tramontano V, Bricolo A, Gerosa M (2006) Cortical mapping, subcortical mapping and motor evoked potential monitoring using the monopolar short train technique: advantages and limitations. Riv Medica 12:33–38

    Google Scholar 

  110. Sala F, Niimi Y, Berenstein A, Deletis V (2001) Neuroprotective role of neurophysiological monitoring during endovascular procedures in the spinal cord. Ann N Y Acad Sci 939:126–136

    CAS  PubMed  Google Scholar 

  111. Sala F, Novak K, Lanteri P, Bueno De Camargo A, Pinna G, Deletis V, Bricolo A (2002) Intraoperative neurophysiological monitoring and mapping in children and adults with brain tumors in critical areas. Neuro-Oncology 4:S85, abstract

    Google Scholar 

  112. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58:1129–1143

    PubMed  Google Scholar 

  113. Sartorius CJ, Berger MS (1998) Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer’s lactate to the cortex. Technical note. J Neurosurg 88:349–351

    CAS  PubMed  Google Scholar 

  114. Sartorius CJ, Wright G (1997) Intraoperative brain mapping in a community setting. Technical considerations. Surg Neurol 47:380–388

    CAS  PubMed  Google Scholar 

  115. Schevon CA, Carlson C, Zaroff CM, Weiner HJ, Doyle WK, Miles D, Lajoie J, Kuzniecky R, Pacia S, Vazquez B, Luciano D, Najjar S, Devinsky O (2007) Pediatric language mapping: sensitivity of neurostimulation and Wada testing in epilepsy surgery. Epilepsia 48:539–545

    PubMed  Google Scholar 

  116. Shimizu T, Maehara T, Hino T, Komori T, Shimizu H, Yagishita A, Yokota T, Hirai S, Rossini PM (2001) Effect of multiple subpial transection on motor cortical excitability in cortical dysgenesis. Brain 124:1336–1349

    CAS  PubMed  Google Scholar 

  117. Signorelli F, Guyotat J, Mottolese C, Schneider F, D’Acunzi G, Isnard J (2004) Intraoperative electrical stimulation mapping as an aid for surgery of intracranial lesions involving motor areas in children. Childs Nerv Syst 20:420–426

    PubMed  Google Scholar 

  118. Sloan TB, Heyer EJ (2002) Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 19:430–443

    PubMed  Google Scholar 

  119. Sloan TB, Jantti V (2008) Anesthetic effects on evoked potentials. In: Nuwer MR (ed) Intraoperative monitoring of the neural function. Elsevier, Amsterdam, pp 94–126

    Google Scholar 

  120. Soriano SG, Eldredge EA, Wang FK, Kull L, Madsen JR, Black PM, Riviello JJ, Rockoff MA (2000) The effect of propofol on intraoperative electrocorticography and cortical stimulation during awake craniotomies in children. Paediatr Anaesth 10:29–34

    CAS  PubMed  Google Scholar 

  121. Stapleton SR, Kiriakopoulos E, Mikulis D, Drake JM, Hoffman HJ, Humphreys R, Hwang P, Otsubo H, Holowka S, Logan W, Rutka JT (1997) Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg 26:68–82

    CAS  PubMed  Google Scholar 

  122. Szelenyi A, Bueno de Camargo A, Deletis V (2003) Neurophysiological evaluation of the corticospinal tract by D-wave recordings in young children. Childs Nerv Syst 19:30–34

    PubMed  Google Scholar 

  123. Szelenyi A, Joksimovic B, Seifert V (2007) Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J Clin Neurophysiol 24:39–43

    PubMed  Google Scholar 

  124. Tamaki T, Kubota S (2007) History of the development of intraoperative spinal cord monitoring. Eur Spine J 16(Suppl 2):S140–S146

    PubMed  Google Scholar 

  125. Taniguchi M, Cedzich C, Schramm J (1993) Modification of cortical stimulation for motor evoked potentials under general anesthesia; technical description. Neurosurgery 32:219–226

    Article  CAS  PubMed  Google Scholar 

  126. Tataroglu C, Ozkiziltan S, Baklan B (2004) Motor cortical thresholds and cortical silent periods in epilepsy. Seizure 13:481–485

    PubMed  Google Scholar 

  127. Webster RI, Erdos C, Evans K, Majnemer A, Kehayia E, Thordardottir E, Evans A, Shevell MI (2006) The clinical spectrum of developmental language impairment in school-aged children: language, cognitive, and motor findings. Pediatrics 118:e1541–e1549

    PubMed  Google Scholar 

  128. Wilson-Holden TJ, Padberg AM, Lenke LG, Larson BJ, Bridwell KH, Bassett GS (1999) Efficacy of intraoperative monitoring for pediatric patients with spinal cord pathology undergoing spinal deformity surgery. Spine 24:1685–1692

    CAS  PubMed  Google Scholar 

  129. Wyllie E (1991) Invasive neurophysiologic techniques in the evaluation for epilepsy surgery in children. Raven, New York

    Google Scholar 

  130. Wyllie E, Luders H, Morris HH 3rd, Lesser RP, Dinner DS, Rothner AD, Erenberg G, Cruse R, Friedman D, Hahn J et al (1988) Subdural electrodes in the evaluation for epilepsy surgery in children and adults. Neuropediatrics 19:80–86

    CAS  PubMed  Google Scholar 

  131. Yamamoto T, Katayama Y, Nagaoka T, Kobayashi K, Fukaya C (2004) Intraoperative monitoring of the corticospinal motor evoked potential (D-wave): clinical index for postoperative motor function and functional recovery. Neurol Med Chir (Tokyo) 44:170–180, discussion 181–172

    Google Scholar 

  132. Zangaladze A, Sharan A, Evans J, Wyeth DH, Wyeth EG, Tracy JI, Chervoneva I, Sperling MR (2008) The effectiveness of low-frequency stimulation for mapping cortical function. Epilepsia 49:481–487

    PubMed  Google Scholar 

  133. Zhou HH, Kelly PJ (2001) Transcranial electrical motor evoked potential monitoring for brain tumor resection. Neurosurgery 48:1075–1080, discussion 1080–1071

    CAS  PubMed  Google Scholar 

  134. Zornow MK, Grafe MR, Tybor C, Swenson MR (1990) Preservation of evoked potentials in a case of anterior spinal artery syndrome. Electroencephalogr Clin Neurophysiol 77:137–139

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sala, F., Manganotti, P., Grossauer, S. et al. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 26, 473–490 (2010). https://doi.org/10.1007/s00381-009-1081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-009-1081-6

Keywords

Navigation