Skip to main content

Degradation of Azo Dyes by White-Rot Fungi

  • Chapter
  • First Online:
Microbial Degradation of Synthetic Dyes in Wastewaters

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

The first synthetic dye, mauveine, was discovered in 1856 by the English chemist W.H. Perkin. Since then, natural dyes have been progressively replaced by synthetic dyes .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  Google Scholar 

  • Ali H (2010) Biodegradation of synthetic dyes—a review. Water Air Soil Poll 213:251–273

    Article  Google Scholar 

  • Ambrosio ST, Campos-Takaki GM (2004) Decolorization of reactive azo dyes by Cunninghamellaelegans UCP 542 under co-metabolic conditions. Bioresour Technol 91:69–75

    Article  Google Scholar 

  • Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb Technol 37:487–496

    Article  Google Scholar 

  • Asgher M, Asad MJ, Bhatti HN, Legge RL (2007) Hyperactivation and thermostabilization of Phanerochaete chrysosporium lignin peroxidase by immobilization in xerogels. World J Microb Biot 23:525–531

    Article  Google Scholar 

  • Asgher M, Shah SAH, Ali M, Legge RL (2006) Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World J Microb Biotechnol 22:89–93

    Article  Google Scholar 

  • Baborová P, Moder M, Baldrian P, Cajthamlová K, Cajthaml T (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157:248–253

    Article  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  Google Scholar 

  • Banci L, Ciofi-Baffoni S, Tien M (1999) Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry 38:3205–3210

    Article  Google Scholar 

  • Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2′-Azinobis(3-Ethylbenzthiazoline-6-Sulfonate): in kraft lignin depolymerization. Appl Environ Microb 61:1876–1880

    Google Scholar 

  • Brunow G (2001) Methods to reveal the structure of lignin. In: Hofrichter M, Steinbüchel A (eds) Wiley, Hoboken, pp 89–116

    Google Scholar 

  • Camarero S, Ibarra D, Martínez MJ, Martínez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

    Article  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330

    Article  Google Scholar 

  • Cao H (2000) Decolorization of textile dyes by white rot fungi. Ph.D. dissertation, University of Georgia, Athens, GA

    Google Scholar 

  • Cardon D (2003) Le monde des teintures naturelles. Belin, Paris

    Google Scholar 

  • Carlile MJ, Watkinson SC, Gooday G (2001) The fungi. Academic Press, London

    Google Scholar 

  • Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb Technol 29:474–477

    Article  Google Scholar 

  • Chen BY, Zhang MM, Chang CT, Ding Y, Chen WM, Hsueh CC (2011) Deciphering azo dye decolorization characteristics by indigenous Proteus hauseri: chemical structure. J Taiwan Inst Chem Engineer 42:327–333

    Article  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi H, Rajiv B, Vyas M (2005) Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol Brilliant Blue R. Enzyme Microb Tech 36:426–431

    Article  Google Scholar 

  • Clarke EA, Anliker R (1980) Organic dyes and pigments. In: Hutzinger O (ed) The handbook of environmental chemistry, anthropogenic compounds. Springer, United States, pp 1–215

    Google Scholar 

  • Collins PJ, Field JA, Teunissen P, Dobson ADW (1997) Stabilization of lignin peroxidases in white rot fungi by tryptophan. Appl Environ Microb 63:2543–2548

    Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microb 56:1114–1118

    Google Scholar 

  • Diorio LA, Mercuri AA, Nahabedian DE, Forchiassin F (2008) Development of a bioreactor system for the decolorization of dyes by Coriolus versicolor f. antarcticus. Chemosphere 72:150–156

    Article  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  Google Scholar 

  • Eaton RA, Hale MDC (1993) Wood: decay, pests and protection. Chapman and Hall, London

    Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microb 62:1151–1158

    Google Scholar 

  • Eichlerova I, Homolka L, Benada O, Kofronova O, Hubalek T, Nerud F (2007) Decolorization of Orange G and Remazol Brilliant Blue R by the white rot fungus Dichomitus squalens: toxicological evaluation and morphological study. Chemosphere 69:795–802

    Article  Google Scholar 

  • Foussereau J, Herve-Bazin B, Meynadier J, Reuter G, Cavelier C (1982) Allergic contact dermatitis to plastic table cloth and phenyl indole. Contact Dermatitis 8:73

    Article  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79:251–262

    Article  Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white-rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JF, Sonnet PE (eds) Biocatalysis in agricultural biotechnology. ACS symposium series. American Chemical Society, Washington, DC, pp 127–140

    Chapter  Google Scholar 

  • Grassi E, Scodeller P, Filiel N, Carballo R, Levin L (2011) Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int Biodeter Biodegr 65:635–643

    Article  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Steinbüchel A, Hofrichter M (eds) Biopolymers, vol. 1. Lignin, humic substances, and coal. Wiley, Weinheim, Germany, pp 129–180

    Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  Google Scholar 

  • Heinfling A, Bergbauer M, Szewzyk U (1997) Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl Microbiol Biotechnol 48:261–266

    Article  Google Scholar 

  • Heinfling A, Martínez MJ, Martínez AT, Bergbauer M, Szewzyk U (1998) Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165:43–50

    Article  Google Scholar 

  • Hessel A, Allegre C, Maisseu M, Charbit F, Moulin P (2007) Guidelines and legislation for dye house effluents. J Environ Manage 83:171–180

    Article  Google Scholar 

  • Hirai H, Sugiura M, Kawai S, Nishida T (2005) Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett 246:19–24

    Article  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    Article  Google Scholar 

  • Hsueh CC, Chen BY, Yen CY (2009) Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. J Hazard Mater 167:995–1001

    Article  Google Scholar 

  • Hu TL (1998) Degradation of azo dye RP2B by Pseudomonas luteola. Water Sci Technol 38:299–306

    Article  Google Scholar 

  • Jadhav SB, Phugare SS, Patil PS, Jadhav JP (2011) Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. Intl Biodeter Biodegr 65:733–743

    Article  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microb 66:524–528

    Article  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolorization: recent advances and future potential. Environ Intl 35:127–141

    Article  Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2008) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biot 79:1053–1059

    Article  Google Scholar 

  • Knapp JS, Newby PS, Reece LP (1995) Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme Microb Tech 17:664–668

    Article  Google Scholar 

  • Kuberan T, Anburaj J, Sundaravadivelan C, Kumar P (2011) Biodegradation of azo dye by Listeria sp. Intl J Environ Sci 1:1760–1770

    Google Scholar 

  • Kulla HG (1981) Aerobic bacterial degradation of azo dyes. In: Leisinger T, Cook AM, Hutter R, Nuesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press, London, pp 387–399

    Google Scholar 

  • Kurniawati S, Nicell JA (2007) Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueous phenol. Enzyme Microb Technol 41:353–361

    Article  Google Scholar 

  • Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microb 41:185–227

    Article  Google Scholar 

  • Low JYS, Abdullah N, Vikineswary S (2009) Evaluation of support materials for the immobilization of Pycnoporus sanguineus mycelia for laccase production and biodegradation of polycyclic aromatic hydrocarbons. Res J Environ Sci 3:357–366

    Article  Google Scholar 

  • Lu Y, Phillips DR, Lu L, Hardin IR (2008) Determination of the degradation products of selected sulfonated phenylazonaphthol dyes treated by white rot fungus Pleurotus ostreatus by capillary electrophoresis coupled with electrospray ionization ion trap mass spectrometry. J Chromatogr A 1208:223–231

    Article  Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Intl Microbiol 8:195–204

    Google Scholar 

  • Martins MAM, Lima N, Armando JD, Silvestre AJD, Queiroz MJ (2003) Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes. Chemosphere 52:967–973

    Article  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolorization and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Intl 37:1362–1375

    Article  Google Scholar 

  • Mendvedev ZA, Crowne HM, Medvedeva MN (1988) Age related variations of hepato carcinogenic effect of azo dye (3′- MDAB) as linked to the level of hepatocyte polyploidization. Mech Ageing Dev 46:159–174

    Article  Google Scholar 

  • Mester T, Field JM (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    Article  Google Scholar 

  • Moreira MT, Mielgo I, Feijoo G, Lema JM (2000) Evaluation of different fungal strains in the decolorisation of synthetic dyes. Biotechnol Lett 22:1499–1503

    Article  Google Scholar 

  • Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007) Laccase–mediator systems and their applications: a review. Appl Biochem Microb 43:523–535

    Article  Google Scholar 

  • Orth AB, Tien M (1995) Biotechnology of lignin degradation. In: Esser K, Lemke PA (eds) The Mycota, vol II., Genetics and biotechnologySpringer, Berlin, pp 287–302

    Google Scholar 

  • Ottoni C, Lima L, Santos C, Lima N (2014) Effect of different carbon sources on decolorization of an industrial textile dye under alkaline–saline conditions. Curr Microbiol 68:53–58

    Article  Google Scholar 

  • Ottoni CA, Santos C, Kozakiewicz Z, Lima N (2013) White-rot fungi capable of decolorizing textile dyes under alkaline conditions. Folia Microbiol 58:187–193

    Article  Google Scholar 

  • Pasti-Grigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microb 58:3605–3613

    Google Scholar 

  • Paszczynski A, Pasti-Grigsby MB, Goszczynski S, Crawford DL, Crawford RL (1991) New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaete chrysosporium. Enzyme Microb Technol 13:378–384

    Article  Google Scholar 

  • Percy AJ, Moore N, Chipman JK (1989) Formation of nuclear anomalies in rat intestine by benzidine and its biliary metabolites. Toxicology 57:217–223

    Article  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  Google Scholar 

  • Pricelius S, Held C, Sollner S, Deller S, Murkovic M, Ullrich R, Hofrichter M, Cavaco-Paulo A, Macheroux P, Guebitz GM (2007) Enzymatic reduction and oxidation of fibre-bound azo-dyes. Enzyme Microb Technol 40:1732–1738

    Article  Google Scholar 

  • Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44:618–626

    Google Scholar 

  • Rajee O, Patterson J (2011) Decolorization of azo dye (Orange MR) by an autochthonous bacterium Micrococcus sp. DBS 2. Indian J Microbiol 51:159–163

    Article  Google Scholar 

  • Reife A, Othmer K (1993) Kirk-Othmer encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  • Romero S, Blanquez P, Caminal G, Font X, Sarra M, Gabarrell X, Vicent T (2006) Different approaches to improving the textile dye degradation capacity of Trametes versicolor. Biochem Eng J 31:42–47

    Article  Google Scholar 

  • Ruiz-Dueñas FJ, Camarero S, Pérez-Boada M, Martinez M, Martinez AT (2001) A new versatile peroxidise from Pleurotus. Biochem Soc T 29:116–122

    Article  Google Scholar 

  • Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP (2009) Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour Technol 100:2493–2500

    Article  Google Scholar 

  • Sawhney R, Kumar A (2011) Congo Red (azo dye) decolorization by local isolate VTII inhabiting dye effluent exposed soil. Intl J Environ Sci 1:1261–1267

    Google Scholar 

  • Selvam K, Swaminathan K, Chae KS (2003) Decolorization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresour Technol 88:115–119

    Article  Google Scholar 

  • Sinsabaug RL, Liptak MA (1997) Enzymatic conversion of plant biomass. In: Wicklow/Söderström (eds) The Mycota vol IV: Environmental and microbial relationships. Springer, Berlin, pp 347–357

    Google Scholar 

  • Solis M, Solis A, Perez HI, Manjarrez N, Flores M (2012) Microbial decoloration of azo dyes: a review. Process Biochem 47:1723–1748

    Article  Google Scholar 

  • Tauber MM, Gübitz GM, Rehorek A (2008) Degradation of azo dyes by oxidative processes—Laccase and ultrasound treatment. Bioresour Technol 99:4213–4220

    Article  Google Scholar 

  • Teunissen PJM, Field JA (1998) 2-Chloro-1,4-dimethoxybenzene as a mediator of lignin peroxidase catalyzed oxidations. FEBS Lett 439:219–223

    Article  Google Scholar 

  • Thurston C (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  Google Scholar 

  • Tony BD, Goyal D, Khanna S (2009) Decolorization of textile azo dyes by aerobic bacterial consortium. Intl Biodeter Biodegr 63:462–469

    Article  Google Scholar 

  • Ürek RO, Pazarlioglu NK (2004) Purification and partial characterization of manganese peroxidase from immobilized Phanerochaete chrysosporium. Process Biochem 39:2061–2068

    Article  Google Scholar 

  • Wariishi H, Gold MH (1989) Lignin peroxidase compound III: formation, inactivation and conversion to the native enzyme. FEBS Lett 243:165–168

    Article  Google Scholar 

  • Yang JS, Yuan HL, Chen WX (2004) Studies on extracellular enzymes of lignin degrading fungus Penicillium sp. P6. China Environ Sci 24:24–27

    Google Scholar 

  • Yang Q, Li C, Li H, Li Y, Yu N (2009) Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor. Biochem Eng J 43:225–230

    Article  Google Scholar 

  • Yemendzhiev H, Alexieva Z, Krastanov A (2009) Decolorization of synthetic dye Reactive Blue 4 by mycelial culture of white-rot fungi Trametes versicolor. Biotechnol Biotec Eq 23:1337–1339

    Article  Google Scholar 

  • Yeo S, Park N, Song HG, Choi HT (2007) Generation of a transformant showing higher manganese peroxidase (Mnp) activity by overexpression of MnP gene in Trametes versicolor. J Microbiol 45:213–218

    Google Scholar 

  • Zhao X, Hardin IR (2007) HLPC and spectophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes Pigments 73:322–325

    Article  Google Scholar 

  • Zhao X, Hardin IR, Hwang H-M (2006) Biodegradation of a model azo disperse dye by the white rot fungus Pleurotus ostreatus. Intl Biodeter Biodegr 57:1–6

    Article  Google Scholar 

  • Zhou W, Zimmermann W (1993) Decolorization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microbiol Lett 107:157–162

    Article  Google Scholar 

  • Žnidaršič P, Pavko A (2001) The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technol Biotech 39:237–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Rodríguez-Couto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodríguez-Couto, S. (2015). Degradation of Azo Dyes by White-Rot Fungi. In: Singh, S. (eds) Microbial Degradation of Synthetic Dyes in Wastewaters. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-10942-8_14

Download citation

Publish with us

Policies and ethics