Skip to main content
Log in

Hyperactivation and thermostabilization of Phanerochaete chrysosporium lignin peroxidase by immobilization in xerogels

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This is a continuation of our previous paper on production of lignin peroxidase (LiP) by Phanerochaete chrysosporium in solid substrate fermentation (SSF) medium of corncobs. The enzyme was purified by ammonium sulphate precipitation and ion-exchange fast protein liquid chromatography. Maximum yield of LiP was 13.7 U/gds (units per gram dry substrate) after 5 days of SSF with 70% moisture and 20% (v/w) inoculum. The approximate molecular mass of purified LiP, estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, was 38 kDa. The pH and temperature optima for the LiP were 4 and 40°C, respectively. Immobilization of LiP in hydrophobic xerogels caused hyperactivation of LiP and enhanced its thermostability properties. The K M and V max values for immobilized LiP were 10.56 mg/ml and 16.67 μmol/min (120.49 U/mg of protein) as compared to 13 mg/ml and 11.76 μmol/min (85 U/mg of protein), respectively, for free LiP using veratryl alcohol as substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asgher M, Asad MJ, Legge RL (2006) Enhanced lignin peroxidase synthesis by Phanerochaete chrysosporium in solid state bioprocessing of a lignocellulosic substrate. World J Microbiol Biotechnol 22:449–453

    Article  CAS  Google Scholar 

  • Aucoin MG, Erhardt FA, Legge RL (2004) Hyperactivation of Rhizomucor miehei lipase by hydrophobic xerogels. Biotechnol Bioeng 85:647–655

    Article  CAS  Google Scholar 

  • Barclay CD, Farquhar GF, Legge RL (1995) Biodegradation and biosorption of polyaromatic hydrocarbons by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 42:958–963

    Article  CAS  Google Scholar 

  • Bayramoglu G, Yelmaz M, Arica MY (2004) Immobilization of a thermostable α-amylase on to reactive membrane, kinetics characterization and application to continuous starch hydrolysis. Food Chem 84:591–599

    Article  CAS  Google Scholar 

  • Chen J, Lin W (2003) Sol–gel powders and supported sol–gel polymers for immobilization of lipase in ester synthesis. Enzyme Microb Technol 32:801–811

    CAS  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi H, Rajiv B, Vyas M (2005) Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol brilliant blue R. Enzyme Microb Technol 36:426–431

    Article  CAS  Google Scholar 

  • Denizli A, Cihangir N, Rad AY, Taner M, Alsancak G (2004) Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium. Process Biochem 39:2025–2030

    Article  CAS  Google Scholar 

  • Fakoussa RM, Hofrichter M (1999) Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol 52:25–40

    Article  CAS  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white-rot basidiomycete Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341

    Article  Google Scholar 

  • Hatcher PG (1990) Chemical structural models for coalified wood (vitrinite) in low rank coal. Org Geochem 16:959–970

    Article  CAS  Google Scholar 

  • ten-Have R, Hartmans S, Teunissen PJM, Field JA (1998) Purification and characterization of two lignin peroxidase isozymes produced by Bjerkandera sp. FEMS Microbiol Lett 422:391–394

    CAS  Google Scholar 

  • Hayatsu R, Winans RE, Mcbeth RL, Scott RG, Moore LP, Studier MH (1979) Lignin-like polymers in coal. Nature 278:41–43

    Article  CAS  Google Scholar 

  • He D, Cai Y, Wei W, Nei L, Yao S (2000) α-Amylase immobilized on bulk acoustic-wave sensor by UV-curing coating. Biochem Eng J 6:7–11

    Article  CAS  Google Scholar 

  • Keeling-Tucker T, Rakic M, Spong C, Brennan JD (2000) Controlling the material properties and biological activity of lipase within sol–gel derived bioglasses via organosilane and polymer doping. Chem Mater 12:3695–3704

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”, the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorentz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    Article  CAS  Google Scholar 

  • Kumari M, Yadav RS, Yadav KD (2002) Secretion of lignin peroxidase by Penicillium citrinum, Fusarium oxysporum and Aspergillus terreus. Indian J Exp Biol 40:802–806

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Moredo N, Lorenzo M, Domınguez A, Moldes D, Cameselle C, Sanromán A (2003) Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J Microbiol Biotechnol 19:665–669

    Article  CAS  Google Scholar 

  • Park D, Haam S, Jang I, Ahn KS, Kim WS (2005) Immobilization of starch converting enzymes on surface modified carriers using single and co-immobilized systems, properties and application to starch hydrolysis. Process Biochem 40:53–61

    Article  CAS  Google Scholar 

  • Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol–gel materials. Biotechnol Bioeng 49:527–534

    Article  CAS  Google Scholar 

  • Reetz MT, Wenkel R, Avnir D (2000) Entrapment of lipase in hydrophobic sol–gel materials: efficient heterogeneous catalysts in aqueous medium. Synthesis 6:781–783

    Article  Google Scholar 

  • Shah VF, Nerud F (2002) Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Can J Microbiol 48:457–870

    Article  Google Scholar 

  • Shrivastava R, Christian V, Vyas BRM (2005) Enzymatic decolorization of sulfonphthalein dyes. Enzyme Microb Technol 36:333–337

    Article  CAS  Google Scholar 

  • Sugiura M, Iría H, Nishida T (2003) Purification and characterization of a novel lignin peroxide from white-rot fungus Phanerochaete sordida YK-264. FEMS Microbiol Lett 224:285–290

    Article  CAS  Google Scholar 

  • Tien M, Kira TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249

    Article  CAS  Google Scholar 

  • Yang JS, Yuan HL, Chen WX (2004) Studies on extracellular enzyme of lignin degrading fungi—Penicillium sp. P6. China Environ Sci 24:24–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asgher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asgher, M., Asad, M.J., Bhatti, H.N. et al. Hyperactivation and thermostabilization of Phanerochaete chrysosporium lignin peroxidase by immobilization in xerogels. World J Microbiol Biotechnol 23, 525–531 (2007). https://doi.org/10.1007/s11274-006-9255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9255-9

Keywords

Navigation