Skip to main content

Modelling of Mammalian Cell Cultures

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Mathematical modelling of mammalian cells has always been for the purpose of control and optimisation of bioprocess. Therefore, most of the models have been unstructured, unsegregated and empirical. However, with the advancement in analytical techniques such as Raman spectroscopy and flow cytometry for monitoring the state variables, structured, segregated and mechanistic models have been developed to provide more understanding of the underlying mechanisms of growth and productivity in mammalian cells. This review describes models based on bioprocess classification, experimental and theoretical tools of modelling, modelling approaches – empirical, mechanistic and stochastic, and finally mathematical techniques used for modelling. The models are developed for a variety of reasons but the prime reason ought to be realism over generality and predictability. Therefore, models described here are reviewed with a biological perspective to assess their impact on our understanding of growth and productivity in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham KA, Eikom TS, Dowben RS, Dowben RM, Garatun-Tjeldsto O (1976) Cell free translation of messenger RNA for myeloma light chain prepared from synchronized plasmacytoma cells. Euro J Biochem 65:79–86

    CAS  Google Scholar 

  • Abu-Absi NR, Zamamiri A, Kacmar J, Balogh SJ, Srienc F (2003) Automated flow cytometry for acquisition of time-dependent population data. Cytometry A51(2):87–963

    Google Scholar 

  • Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108(5):1215–1221

    CAS  PubMed  Google Scholar 

  • Adams CP, Brantner VV (2010) Spending on new drug development. Health Econ 19:130–141

    PubMed  Google Scholar 

  • Adar F, Geiger R, Noonana J (1997) Raman spectroscopy for process/quality control. Appl Spectrosc Rev 31(1 & 2):45–101

    Google Scholar 

  • Agrawal P, Koshy G, Ramseier M (1989) An algorithm for operating a fed-batch fermentor at optimum specific growth rate. Biotechnol Bioeng 33:115–125

    CAS  PubMed  Google Scholar 

  • Albert S, Kinley RD (2001) Multivariate statistical monitoring of batch processes: an industrial case study of fermentation supervision. Trends Biotechnol 19:53–62

    CAS  PubMed  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, London

    Google Scholar 

  • Al-Rubeai M, Emery AN (1990) Mechanisms and kinetics of monoclonal antibody synthesis and secretion in synchronous and asynchronous hybridoma cell cultures. J Biotechnol 16(1–2):67–85

    CAS  PubMed  Google Scholar 

  • Al-Rubeai M, Emery AN (1996) Flow cytometry applications in cell culture. Marcel Dekker, New York

    Google Scholar 

  • Al-Rubeai M, Emery AN, Chalder S, Jan DC (1992) Specific monoclonal antibody productivity and the cell cycle comparisons of batch, continuous and perfusion cultures. Cytotechnology 9:85–97

    CAS  PubMed  Google Scholar 

  • Andrews GF (1993) The yield equations in the modelling and control of bioprocesses. Biotechnol Bioeng 42:549–556

    CAS  PubMed  Google Scholar 

  • Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG (2009) Systems biology: parameter estimation for biochemical models. FEBS 276(4):886–902

    CAS  Google Scholar 

  • Bachinger T, Riese U, Eriksson R, Mandenius CF (2000) Monitoring cellular state transitions in a production-scale CHO cell process using a chemical multisensor array. J Biotechnol 76:61–71

    CAS  PubMed  Google Scholar 

  • Bailey JE (1998) Mathematical modelling and analysis in biochemical engineering: past accomplishments and future opportunities. Biochem Prog 14:8–20

    CAS  Google Scholar 

  • Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Barford JP, Phillips PJ, Harbour C (1992) Simulation of animal cell metabolism. Cytotechnology 10:63–74

    CAS  PubMed  Google Scholar 

  • Becker T, Hitzmann B, Muffler K, Porrtner R, Reardon KF, Stahl F, Uber R (2006) Future aspects of bioprocess monitoring. In: Uber R, Sell D (eds) White biotechnology, vol 105. Springer, Berlin/Heidelberg, pp 249–293

    Google Scholar 

  • Bernaerts K, Van Impe JF (2004) Data-driven approaches to the modelling of bioprocesses. Trans Inst Meas Control 26:349–372

    Google Scholar 

  • Bertalanffy LV (1957) Quantitative laws in metabolism and growth. Q Rev Biol 32:217–231

    Google Scholar 

  • Bibila TA, Flickinger MC (1991a) Structured model for monoclonal antibody synthesis in exponentially growing and stationary phase hybridoma cells. Biotechnol Bioeng 37:210–226

    CAS  PubMed  Google Scholar 

  • Bibila TA, Flickinger MC (1991b) Model of inter-organelle monoclonal transport and secretion in mouse hybridoma cells. Biotechnol Bioeng 38:767–780

    CAS  PubMed  Google Scholar 

  • Bibila TA, Flickinger MC (1992a) Use of structured kinetic model of antibody synthesis and secretion for optimisation of antibody production system: I. Steady-state analysis. Biotechnol Bioeng 39:251–261

    CAS  PubMed  Google Scholar 

  • Bibila TA, Flickinger MC (1992b) Use of structured kinetic model of antibody synthesis and secretion for optimisation of antibody production system: II. Steady-state analysis. Biotechnol Bioeng 39:251–261

    CAS  PubMed  Google Scholar 

  • Bi Jing-Xiu, Shuttleworth J, Al-Rubeai M (2004) Uncoupling of cell growth and proliferation results in enhancement of productivity. Biotechnol Bioeng 85(7):741–749

    CAS  PubMed  Google Scholar 

  • Brenner JL, Jasiewicz KL, Fahley AF, Kemp BJ, Abbott AL (2010) Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans. Curr Biol 20:1321–1325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buck KKS, Subramanian V, Block DE (2002) Identification of critical batch operating parameters in fed-batch recombinant E. coli fermentation using decision tree analysis. Biotechnol Prog 18(6):1366–1376

    CAS  PubMed  Google Scholar 

  • Butler M (2005) Animal cell cultures: recent developments and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    CAS  PubMed  Google Scholar 

  • Campello RJGB, Von Zuben FJ, Amaral WC, Meleiro LAC, Maciel Filho R (2003) Hierarchical fuzzy models within the framework of orthonormal basis functions and their application to bioprocess control. Chem Eng Sci 58:4259–4270

    CAS  Google Scholar 

  • Cannizzaro C, Rhiel M, Morison I, von Stockar U (2003) Online monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol Bioeng 86(6):668–680

    Google Scholar 

  • Caramihai M, Severin I (2013) Bioprocess modeling and control (Chapter 6). INTECH, http://dx.doi.org/10.5772/55362 pp 147–170

  • Carroll S, Naciri M, Al-Rubeai M (2007) Monitoring of Growth, Physiology and Productivity of Animal cells by Flow Cytometry. In: Portner R (ed) Animal cell biotechnology methods protocols, 24th edn. Human Press, Totowa, pp 223–238

    Google Scholar 

  • Carvalhal AV, Marcelino I, Carrondo MJT (2003) Metabolic changes during cell growth inhibition by p27 overexpression. Appl Microbiol Biotechnol 63:164–173

    CAS  PubMed  Google Scholar 

  • Castro PML, Hayter PI, Ison AP, Bull AT (1992) CHO cell growth and recombinant interferon-γ production: effects of BSA, pluronic and lipids. Appl Microbiol Biotechnol 38:84–90

    CAS  PubMed  Google Scholar 

  • Cazzador L (1991) Analysis of oscillations in yeast continuous culture by new simplified model. Bull Math Biol 53:685–700

    CAS  PubMed  Google Scholar 

  • Cazzador L, Mariani L (1993) Growth and production modelling in hybridoma continuous cultures. Biotechnol Bioeng 42:1322–1330

    CAS  PubMed  Google Scholar 

  • Cebeci Y, Sönmez I (2006) Application of the Box-Wilson experimental design method for the spherical oil agglomeration of coal. Fuel 85:289–297

    CAS  Google Scholar 

  • Chang JS, Lee JT, Chang AC (2006) Neural-network rate-function modeling of submerged cultivation of Monascus anka. Biochem Eng J 32:119–126

    CAS  Google Scholar 

  • Charaniya S, Le S, Rangwala H, Mills K, Johnson K, Karypsis K, Hu W-S (2010) Mining manufacturing data for discovery of high productivity process characteristics. J Biotechnol 147(3–4):690–699

    Google Scholar 

  • Chotteau V, Bastin G (1992) Identification of a reaction mechanism for a class of animal cell cultures. In: Proceedings of the ICCAFT-5 IFAC-BIO-2, Symposium on modelling and control of biological processes. Pergamon, Keystone, pp 215–218

    Google Scholar 

  • Chatterjee S, Price B (1991) Regression analysis by example. Wiley, New York

    Google Scholar 

  • Chee Danny, Wong Fung, Wong Kathy, Tin Kem Goh, Lin Tang, Heng, Chew Kiat Yap Miranda Gek Sim (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177

    Google Scholar 

  • Chen L, Nguang SK, Chen XD, Li XM (2004) Modelling and optimisation of fed-batch fermentation processes using dynamic neural networks and genetic algorithms. Biochem Eng J 22:51–61

    Google Scholar 

  • Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187

    CAS  PubMed  Google Scholar 

  • Coco-Martin J, Harmsen M (2008) A review of therapeutic protein expression by mammalian cells, Chapter4 . Bioprocess Int June (Supplement):28–34

    Google Scholar 

  • Coleman MC, Block DE (2006) Retrospective optimisation of time-dependent fermentation control strategies using time-dependent historical data. Biotechnol Bioeng 95(3):142–423

    Google Scholar 

  • Cruz HJ, Moreira JL, Carrondo MJT (1999) Metabolic shifts by nutrient manipulation in continuous cultures of BHK cells. Biotechnol Bioeng 66:104–112

    CAS  PubMed  Google Scholar 

  • Cui Q, Lawson GJ (1982a) Study on models of single populations: an expansion of the logistic and exponential equations. J Theor Biol 98:645–659

    Google Scholar 

  • Cui Q, Lawson GJ (1982b) A new model of single-species population – by extending of the logistic and exponential equations with several limiting conditions. Acta Ecol Sin 2(4):403–415 [In Chinese with English summary]

    Google Scholar 

  • Cunha-Bakeev C, Glassey J, Montague G, Al-Rubeai M, Hardwicke P (2005) Data-based modelling of cell cultures. Animal Cell Technol Meets Genom 2:439–445

    Google Scholar 

  • Dahlberg G (1940) Statistical methods for medical and biological students. Interscience Publications, New York

    Google Scholar 

  • Dairaku K (1985) Comparison of simple population models in a baker’s yeast fed-batch culture. Chem Eng Sci 40:499–507

    Google Scholar 

  • Dalili M, Sayles GD, Ollis DF (1990) Glutamine-limited batch hybridoma growth and antibody production: experiment and model. Biotech Bioeng 36:74–82

    CAS  Google Scholar 

  • Dantigny P (1995) Modelling of the aerobic growth of Saccharomyces cerevisiae on mixtures of glucose and ethanol in continuous culture. J Biotechnol 43:213–220

    CAS  PubMed  Google Scholar 

  • de Alwis Diliny M, Dutton Roshni L, Sharer J, Moo-Young M (2007) Statistical methods in media optimisation for batch and fed-batch animal cell culture. Bioprocess Biosyst 30:107–113

    Google Scholar 

  • de Tremblay M, Perrier M, Chavarie C, Archambault J (1992) Optimisation of fed-batch culture of hybridoma cells using dynamic programming: single and multi feed case. Bioprocess Eng 7:229–234

    Google Scholar 

  • de Tremblay M, Perrier M, Chavarie C, Archambault J (1993) Fed-batch culture of hybridoma cells: comparison of optimal control approach and closed loop strategies. Bioprocess Biosyst Eng 9:13–21

    Google Scholar 

  • Dhir S Jr, Morrow KJ, Rhinehart PR, Wiesner T (2000) Dynamic optimisation of hybridoma growth in a fed-batch bioreactor. Biotechnol Bioeng 67(2):197–205

    CAS  PubMed  Google Scholar 

  • Dorka P (2007) Thesis: modelling batch and fed-batch mammalian cell cultures for optimising MAb productivity. University of Waterloo, Waterloo

    Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York

    Google Scholar 

  • Duncan A (2002) Antibodies hold the key. Chemistry & Industry (5):14–16, 3p

    Google Scholar 

  • Dutton RL (1998) PhD thesis: growth and productivity of a recombinant Chinese Hamster ovary cell line in batch culture

    Google Scholar 

  • Enejder AM, Koo TW, Oh J, Hunter M, Sasic S, Feld MS, Horowitz GL (2002) Blood analysis by Raman spectroscopy. Opt Lett 27(22):2004–2006

    CAS  PubMed  Google Scholar 

  • Engl HW, Flamm C, Kugler P, Lu J, Mullet S, Schuster P (2009) Inverse problems in system biology. Inverse Probl 25(12):123014

    Google Scholar 

  • Ergun M, Mutlu FS (2000) Application of statistical techniques to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Bioresour Technol 73:251–253

    CAS  Google Scholar 

  • Europa AF, Gambhir A, Fu PC, Hu WS (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 667:25–34

    Google Scholar 

  • Farrar DE, Gluber RR (1967) Multicollinearity in regression analysis: the problems revisited. Rev Econ Stat 49(1):92–107

    Google Scholar 

  • FDA Guidance for industry PAT-A framework for innovative pharmaceutical development, manufacturing and quality assurance (2004) http://www.fda.gov/downloads/Drugs/GuidanceComplianceregulatoryInformation/Guidance/ucm070305.pdf

  • Ferenci T (1999) Growth of bacterial cultures’ 50 years on: towards an uncertainty principle instead of constants in bacterial growth kinetics. Res Microbial 150:431–438

    CAS  Google Scholar 

  • Ferentinos KP (2005) Biological engineering applications of feed-forward neural networks designed and parameterized by genetic algorithms. Neural Netw 18(7):934–950

    PubMed  Google Scholar 

  • Flickinger MC, Drew W (1999) Encyclopaedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, New York

    Google Scholar 

  • Fogolin MB, Wagner R, Etcheverrigaray M, Kratje R (2004) Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF-producing CHO cells. J Biotechnol 109:179–191

    CAS  PubMed  Google Scholar 

  • Follstad BD, Balcarcel RR, Stephanopolous G, Wang DIC (1999) Metabolic flux analysis of hybridoma continuous steady state multiplicity Biotechnol. Bioeng. 63:675

    Google Scholar 

  • Frame KK, Hu W-S (1991) Kinetic study of hybridoma cell growth in continuous culture ii. Behavior of producers and comparison to nonproducers. Biotech Bioeng 38:1020–1028

    CAS  Google Scholar 

  • Fredrickson AG (1976) Formulation of structured growth models. Biotechnol Bioeng 18:1481–1486

    CAS  PubMed  Google Scholar 

  • Fredrickson AG (1991) Segregated, structured, distributed models and their role in microbial ecology: a case study based on work done on the filter-feeding ciliate Tetrahymena thermophile. Microbial Ecol 22:139–159

    CAS  Google Scholar 

  • Fredrickson AG, Ramakrishna D, Tsuchiya HM (1967) Statistics and dynamics of prokaryotic cell populations. Math Biosci 1:327–374

    Google Scholar 

  • Fredrickson AG, Megee (111) It D, Tsuchiya HM (1970) Advan Appl Microbiol 13:149. Cited in Tziampazis, and Sambanis (1994)

    Google Scholar 

  • Fussengger M (2001) The impact of mammalian gene regulation concepts on functional genomic research, metabolic engineering and advanced gene therapies. Biotechnol Prog 17:1–51

    Google Scholar 

  • Fussengger M, Schlatter S, Dalwyler D, Mazur X, Bailey JE (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat Biotechnol 16:468–472

    Google Scholar 

  • Fussengger M, Morris RP, Fux C, von Stockar B, Thompson CJ, Bailey JE (2000) Streptogramin-based gene regulation systems for mammalian cells. Nat Biotechnol 18:1203–1208

    Google Scholar 

  • Gaertner JG, Dhurjati P (1993) Fractional factorial study of hybridoma behaviour, 1 Kinetics of growth and antibody production. Biotechnol Prog 9:298–308

    CAS  PubMed  Google Scholar 

  • Ganguly J, Vogel G (2006) Process Analytical Technology (PAT) and scalable automation for bioprocess control and monitoring – a case study. ISPE 26(1):1–9 (reprinted from Pharmaceutical Engineering)

    Google Scholar 

  • Gao J, Gorenflo V, Scharer JM, Budman, HM (2007) Dynamic metabolic modelling for the optimisation and control of bioprocesses. J Biotechnol. doi:10.1016/j.jbiotec.2007.08.020

  • Garatun-Tjeldstr O, Pryme IF, Weltman JK, Dowben RM (1976) Synthesis and secretion of light-chain immunoglobulin in two successive cycles of synchronized plasmacytoma cells. J Cell Biol 68:232–239

    Google Scholar 

  • Gaudy AF, Gaudy EF (1980) Microbiology for environmental scientists and engineers. McGraw-Hill, New York

    Google Scholar 

  • Gille U, Salomon FV (1995) Bone growth in ducks through mathematical models with special reference to the Janoschek growth curve. Growth Dev Aging 59:207–214

    CAS  PubMed  Google Scholar 

  • Glacken MW, Adema E, Sinskey AJ (1988) Mathematical descriptions of hybridoma culture kinetics: I. Initial metabolic rates. Biotechnol Bioeng 32:491–506

    CAS  PubMed  Google Scholar 

  • Glacken MW, Huang C, Sinskey AJ (1989) Mathematical descriptions of hybridoma culture kinetics: III. Simulation of fed-batch bioreactors. J Biotechnol 10:39–66

    CAS  Google Scholar 

  • Gold HJ (1977) Mathematical modelling of biological systems: an introductory guidebook. Wiley, New York

    Google Scholar 

  • Gombert AK, Nielson J (2000) Mathematical modelling of metabolism. Curr Opin Biotechnol 11:180–186

    CAS  PubMed  Google Scholar 

  • Gompertz B (1825) On the nature o f the function expressive of the law of human mortality, and on a new method of determining the value of life contingencies. Philos Trans R Soc 27:513–585

    Google Scholar 

  • Goudar CT, Joeris K, Konstantinov KB, Piret JM (2005) Logistic equations effectively model mammalian cell batch and fed-batch kinetics by logically constraining the fit. Biotechnol Prog 21:1109–1118

    CAS  PubMed  Google Scholar 

  • Grady CPL, Daigger GT, Lim HC (1999) Biological wastewater treatment. Marcel Dekker, New York

    Google Scholar 

  • Gueret V, Negrete-Vergen JA, Lyddiatt A, Al-Rubeai M (2002) Rapid titration of adenoviral infectivity by flow cytometry in batch culture of infected HEK 293 cells. Cytotechnology 38:87–97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gunther JC, Conner JS, Seborg DE (2007) Fault detection and diagnosis in an industrial fed-batch cell culture process. Biotechnol Prog 23(4):851–857

    CAS  PubMed  Google Scholar 

  • Haag JE, Vande Wouwer A, Bogaerts P (2005) Dynamic modelling of complex biological systems: a link between metabolic and macroscopic description. Math Biosci 193:283–291

    Google Scholar 

  • Hams P, Kostov Y (2002) Bioprocess monitoring. Curr Opin Biotechnol 13:124–127

    Google Scholar 

  • Hanson MA, Kostov Y, Ge X, Brorson KA, Moreira AR (2007) Comparison of optical pH and dissolved oxygen sensors with traditional electrochemical probes during mammalian cell culture. Biotechnol Bioeng 97:833–841

    CAS  PubMed  Google Scholar 

  • Harding CL, Lloyd DR, McFarlane CM, Al-Rubeai M (2000) Using the microcyte flow cytometer to monitor cell number, viability, and apoptosis in mammalian cell culture. Biotechnol Prog 16:800–802

    CAS  PubMed  Google Scholar 

  • Hayter PM (1989) An investigation into factors that affect monoclonal antibody production by hybridomas in culture. PhD thesis submitted to Surrey University, Guildford

    Google Scholar 

  • Henderson MH, Ting-Beall HP, Tran-Sun-Tay R (1992) Shear sensitivity of mitotic doublets in GAP A3 hybridoma cells. ASME Bioprocess Eng Symp BED 23:7

    Google Scholar 

  • Honda H, Kobayashi T (2000) Fuzzy control of bioprocesses. J Biosci Bioeng 89:401–408

    CAS  PubMed  Google Scholar 

  • Horiuchi J (2002) Fuzzy modelling and control of biological processes. J Biosci Bioeng 94:401–408

    Google Scholar 

  • Horiuchi J, Kamasawa M, Miyakawa H, Kishimoto M (1993) Phase control of fed-batch culture for α-amylase production based on culture phase identification using fizzy interference. J Ferment Bioeng 76:207–212

    CAS  Google Scholar 

  • Horiuchi J, Kishimoto M, Momose H (1995) Hybrid simulation of microbial behaviour combining a statistical procedure and fizzy identification of culture phases. J Ferment Bioeng 79:297–299

    CAS  Google Scholar 

  • Houston WJB (1983) The analysis of errors in orthodontic measurements. Am J Orthod 83:382–390

    CAS  PubMed  Google Scholar 

  • Hrncirik P, Nahlik J, Vovsik J (2002) The BIOGENES system for knowledge-based bioprocess control. Expert Syst Appl 23:145–153

    Google Scholar 

  • Hu W-S, Himes VB (1989) Stoichiometric considerations of mammalian cell metabolism in bioreactors. In: Fiechter A, Okada H, Tanner RD (eds) Bioproducts and bioprocesses. In: Second conference to promote Japan/US joint projects and cooperation in biotechnology, Lake Biwa, 27–30 Sept 1986. Springer, Berlin, pp 33–46

    Google Scholar 

  • Hu W-S, Peshwa MV (1991) Animal cell bioreactors, recent advances and challenges to scale up. Ca J Chem Eng 69:409–420

    CAS  Google Scholar 

  • Ibarra N, Watanabe S, Bi J-X, Shuttleworth J, Al-Rubeai M (2003) Modulation of cell cycle for enhancement of antibody productivity in perfusion culture of NS0 cells. Biotech Prog 19:224–228

    CAS  Google Scholar 

  • ICH Q8R2 (2009) Pharmaceutical development Geneva, Switzerland, International conference on horminisation of technical requirements for registration of pharmaceutical for human use. http://www.ich.org/LOB/media/MEDIA4986.pdf

  • James R, Legge R, Chang AC (2002) Comparative study of black box and hybrid methods in fed-batch fermentation. J Process Control 12:113–121

    CAS  Google Scholar 

  • Jang JD, Barford JP (2000) An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody. Biochem Eng J 4:153–168

    CAS  Google Scholar 

  • Jenkins N (2003) Analysis and manipulation of recombinant glycoproteins manufactured in mammalian cell culture. In: Vinci VA, Parekh SR (eds) Handbook of industrial cell culture: mammalian, microbial and plant cells. Humana Press, Totowa, pp 3–20

    Google Scholar 

  • Jolicoeur P (1999) Introduction to biometry. Plenum Publishers, New York, pp 345–387

    Google Scholar 

  • Jolicoeur P, Heusner AA (1986) Log-normal variation belts for growth curve. Biometrics 42:785–794

    CAS  PubMed  Google Scholar 

  • Jolicoeur P, Pontier J (1989) Population growth and decline: a four-parameter generalisation of the logistic curve. J Theor Biol 141:563–571

    Google Scholar 

  • Jolicoeur P, Cabana T, Ducharme G (1992a) A four-parameter generalisation of the Gompertz curve suitable for somatic growth. Growth Dev Aging 56:69–74

    CAS  PubMed  Google Scholar 

  • Jolicoeur P, Pontier J (1992b) Asymptotic models for the longitudinal growth of human stature. Am J Hum Biol 4:461–468

    Google Scholar 

  • Julien C, Whitford W (2007) Bioreactor monitoring, modelling and simulation bioreactors: Chapter one. Bioprocess Int 5:10–17

    CAS  Google Scholar 

  • Kaufmann H, Mazur X, Fussenegger M, Bailey JE (1999) Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng 63:573–582

    CAS  PubMed  Google Scholar 

  • Kaufmann H, Mazur X, Marone R, Bailey JE, Fussenegger M (2001) Comparative analysis of two controlled proliferation strategies regarding product quality, influence on tetracycline-regulated gene expression, and productivity. Biotechnol Bioeng 72:592–602

    CAS  PubMed  Google Scholar 

  • Kirdar AO, Green KD, Rathore AS (2008) Application of multivariate data analysis for identification and successful resolution of root cause for a bioprocessing application. Biotechnol Prog 24(3):720–726

    CAS  PubMed  Google Scholar 

  • Knights CD, Peters CA (1999) Statistical analysis of nonlinear parameter estimation for Monod biodegradation kinetics using bivariate data. Biotechnol Bioeng 69:160–170

    Google Scholar 

  • Komives C, Parker RS (2003) Bioreactor state estimation and control. Curr Opin Biotechnol 14(5):468–474

    CAS  PubMed  Google Scholar 

  • Kompala DS, Ramakrishna D, Tsao GT (1984) Cybernetic modelling of microbial growth on multiple substrates. Biotechnol Bioeng 26:1272–1281

    CAS  PubMed  Google Scholar 

  • Kontoravdi C, Asprey SP, Pistikopoulos EN, Manatalaris A (2007) Development of a dynamic model of monoclonal antibody production and glycosylation for product quality monitoring. Comput Chem Eng 34:1192–1198

    Google Scholar 

  • Kontoravdi C, Pistikopoulos EN, Manatalaris A (2010) A Systematic development of predictive mathematical model for animal cell cultures. Comput Chem Eng 34:1192–1198

    CAS  Google Scholar 

  • Korke Rashmi Gatti, de Leon Marcela, Yin Lau Ally Lei, Lim, Justin Wee Eng Seow, Keong Teck, Maxey Ching Ming Chung, Wei-Shou Hu (2004) Large scale gene expression profiling of metabolic shift of mammalian cells in culture. J Biotechnol 107(1):1–17

    Google Scholar 

  • Koutinas M, Kiparissides A, Pistikopoulos EN (2012) A. Mantalaris, Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology. Comput Struct Biotechnol J 3(4):1–9

    Google Scholar 

  • Kovarova-Kovatr K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62:646–666

    Google Scholar 

  • Kuenzi M, Fiechter A (1969) Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae. Arch Mikrobiol 1969(64):396–407

    Google Scholar 

  • Kumar N, Gammell P, Clynes M (2007) Proliferation control strategies to improve productivity and survival during CHO based production culture. Cytotechnology 53:33–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuystermans D, Mohd A, Al-Rubeai M (2012) Automated flow cytometry for monitoring CHO cell cultures. Methods 56(3):358–365

    CAS  PubMed  Google Scholar 

  • Krebs CJ (1996) Ecology, 4th edn. Harper and Row Publishers, New York, pp 198–229

    Google Scholar 

  • Lai T, Yang Y, Ng SK (2013) Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 6:579–603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lara EF, Link H, Wenster-Botz D (2006) Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm. Process Biochem 41(10):2200–2206

    Google Scholar 

  • Lasdon L, Smith S (1992) Solving large sparse nonlinear programs using GRG ORSA. J Comput 4(1):2–15

    Google Scholar 

  • Le H, Kabur S, Pallastrini L, Sun Z, Mills K, Johnson K, Karypis G, Hu W-S (2012) Multivariate analysis of cell culture bioprocess data- lactate consumption as process indicator. J Biotechnol 162:210–223

    CAS  PubMed  Google Scholar 

  • Leah Edelstein-Keshet (2005) An introduction to continuous models, Part II, Chapter 4. In: Mathematical models in biology. Siam, p 119

    Google Scholar 

  • Lee SB, Bailey JE (1984a) A mathematical model for λdv plasmid replication: analysis of wild-type plasmid. Plasmid 11:151–165

    CAS  PubMed  Google Scholar 

  • Lee SB, Bailey JE (1984b) A mathematical model for λdv plasmid replication: analysis of copy number mutants. Plasmid 11:166–177

    CAS  PubMed  Google Scholar 

  • Lee Y, Yean Y, Yap GS, Wei-Shou H, Wong Cathy TK (2003) Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production. Biotechnol Prog 19:501–509

    CAS  PubMed  Google Scholar 

  • Lei F, Rotbøll M, Jørgensen SB (2001) A biochemically structured model for Saccharomyces cerevisiae. J Biotechnol 88:205–221

    CAS  PubMed  Google Scholar 

  • Levins R (1966) The strategy of model building in population biology. Am Sci 54:421–431

    Google Scholar 

  • Li B, Ryan PW, Ray BH, Leister KJ, Sirimuthu NM, Ryder AG (2010) Rapid characterisation and quality control of complex cell culture media solutions using raman spectroscopy and chemometrics. Biotechnol Bioeng 107(2):290–301

    CAS  PubMed  Google Scholar 

  • Liberti P, Baglioni C (1973) Synthesis of immunoglobulin and nuclear protein in synchronized mouse myeloma cells. J Cell Physiol 82:113–120

    CAS  PubMed  Google Scholar 

  • Linardos TI, Kalogerakis N, Behie LA (1991) The effect of specific growth rate and death rate on monoclonal antibody production in hybridoma chemostat culture. Can J Chem Eng 69:429–438

    CAS  Google Scholar 

  • Linz M, Zeng AP, Wagner R, Deckwer WD (1997) Stoichiometry, kinetics, and regulation of glucose and amino acid metabolism of a recombinant BHK cell line in batch and continuous cultures. Biotech Progr 13:453–463

    CAS  Google Scholar 

  • Liu Y (2007) Overview of some theoretical approaches for derivation of the Monod equation. Appl Microbial Biotechnol 73:1241–1250

    CAS  Google Scholar 

  • Liu D, Zhang H, Hu S-W (2008) Neural networks: algorithms and applications. Neurocomputing 71:471–473

    Google Scholar 

  • Ljing L (1999) System identification theory for the user, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Lloyd DR, Leelavatcharamus V, Emery AN, Al-Rubeai M (1999) The role of the cell cycle in determining gene expression and productivity in CHO cells. Cytotechnology 30:49–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd DR, Holmes P, Lee JP, Emery AN, Al-Rubeai M (2000) Relationship between cell size, cell cycle and specific recombinant protein productivity. Cytotechnology 34:59–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luebbert A, Jorgensen S (2001) Bioreactor performance: a more scientific approach for practice. J Biotechnol 85:187–212

    Google Scholar 

  • Makarow M, Højguard L, Ceulemans R (2008) Advancing system biology for medical application. ESF Sci Pol Brief 35:1–12

    Google Scholar 

  • Malthus T (1798) An essay on the principle of population. Printed for J. Johnson, in St Paul Church Yard, London

    Google Scholar 

  • Mandenius CF (2004) Recent developments in the monitoring, modelling and control of biological production system. Bioproc Biosyst Eng 26:347–352

    CAS  Google Scholar 

  • Mandenius CF, Brundin A (2008) Bioprocess optimisation using design-of-experiment methodology. Biotechnol Prog 24:1191–1203

    CAS  PubMed  Google Scholar 

  • Mantzaris NV, Daoutidis P, Srienc F (2001) Numerical solution of multi-variable cell population balance models: I. Finite difference methods. Comput Chem Eng 25:1411–1440

    CAS  Google Scholar 

  • McAdams HH, Arkin A (1999) It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15(2):65–69

    CAS  PubMed  Google Scholar 

  • Meltser M, Shoham M, Manevitz LM (1996) Approximating functions by neural networks: a constructive solution in the uniform norm. Neural Netw 9(6):965–978

    PubMed  Google Scholar 

  • Miller WM, Blanch LW, Wilke CR (1986a) Kinetic analysis of hybridoma growth in continuous suspension culture. ACS national meeting, Anaheim

    Google Scholar 

  • Miller WM, Blanch LW, Wilke CR (1986b) Kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate and pH. Biotechnol Bioeng 32:947–965

    Google Scholar 

  • Mitchison JM (1971) The biology of the cell cycle. Cambridge University Press, Cambridge

    Google Scholar 

  • Mochida hidecki, Pi Chao Wang, Nayve Jr Fr, Ryuji Sato, Minoru Harigate, Nakao Nomura, Masatoshi Matsumura (2000) Effects on high cell density on growth-associated monoclonal antibody production by hybridoma T0405 cells immobilized in macroporous cellulose carriers. Biotechnol Bioprocess Eng 5:110–117

    Google Scholar 

  • Mohd A (2013) Monitoring of CHO cell culture by flow cytometry. PhD thesis, University College Dublin, Dublin

    Google Scholar 

  • Montague G, Morris J (1994) Neural-network contributions in biotechnology. Trends Biotechnol 12:312–324

    CAS  PubMed  Google Scholar 

  • Montesinos MC, Gardangi P, Longaker M, Sung J, Levine J, Nilsen D, Reibman J, Li M, Jiang CK, Hirschhorn R, Recht PA, Ostad E, Levin RI, Cronstein BN (1997) Would healing is accelerated by agonists of adenosine A2 (G alpha s-linked) receptors. J Exp Med 186:1615–1620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montgomery DC (2000) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  • Moore A, Mercer J, Dutina G, Donahue CJ, Bauer KD, Mather JP, Etcheverry T, Ryll T (1997) Effects of temperature shift on cell cycle, apoptosis and nucleotide pools in CHO cell batch cultures. Cytotechnology 23:47–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moo-Young M (ed) (1995) Comprehensive biotechnology – the principles applications and regulations of biotechnology in industry agriculture and medicine. Vol I: The principles of biotechnology: scientific fundamentals; Vol. II: The principles of biotechnology: engineering considerations. Pergamon Press, Oxford

    Google Scholar 

  • Moretto J, Smelko JP, Cuellar Berry B, Ryll T, Wiltberger K (2011) Process Raman spectroscopy for in-line CHO cell culture monitoring. Am Pharm Rev 1–8

    Google Scholar 

  • Motulsky H (2001) The graph guide to nonlinear regression. GraphPad Software Inc. http://www.graphpad.com/www/nonling2.htm

  • Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression. Oxford Press, Oxford

    Google Scholar 

  • Mulkutla BC, Gramer M, Hu WS (2012) On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. Metab Eng 14(2):138–149

    Google Scholar 

  • Mungikar A, Kamat M (2010) Use of in-line Raman spectroscopy as a non-destructive and rapid analysis technique to monitor aggregation of therapeutic protein. Am Pharm Rev 78–83

    Google Scholar 

  • Myers RH (1990) Classical and modern regression with application, 2nd edn. Dexbury Press, Belmont

    Google Scholar 

  • Naciri M, Al-Rubeai M (2006) Non-invasive flow cytometric monitoring of Ph (i) in cell culture processes using EGFP. J Immunol Methods 315:185–190

    CAS  PubMed  Google Scholar 

  • Needham D, Ting-Beall HP, Tran-Son-Tay R (1990) Morphology and mechanical properties of GAP A3 hybridoma cells as related to cell cycle. ASME Bioprocess Eng Symp BED 16:5–10

    Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimisation. Compt J 7:308–313

    Google Scholar 

  • Newholme P, Lima MMR, Procopio J, Pithon-Curr TC, Doi SQ, Bazotte RB, Curi R (2003) Glutamine and glutamate as vital metabolites. Braz J Med Biol Res 36(2):153–163

    Google Scholar 

  • Nielsen J, Nikolajsen K, Villadsen J (1991) Structured modelling of a microbial system 1: theoretical study of lactic acid fermentation. Biotechnol Bioeng 38:1–10

    CAS  PubMed  Google Scholar 

  • Nielson J, Viladsen J (1992) Modelling of microbial kinetics. Chem Eng Sci 47:4225–4270

    Google Scholar 

  • Nielson J, Villadsen J, Liden G (2003) Modeling of growth kinetics. In: Bioreaction engineering principles, 2nd edn. Kluwer/Plenum Publishers, New York

    Google Scholar 

  • Noe DA, Delenick JC (1989) Quantitative analysis of membrane and secretory protein processing and intracellular transport. J Cell Sci 92:449–459

    CAS  PubMed  Google Scholar 

  • Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    PubMed Central  PubMed  Google Scholar 

  • Paredes C, Prats E, Cairo JJ, Azorin F, Cornudella L, Godia F (1999) Modification of glucose and glutamine metabolism in hybridoma cells through metabolic engineering. Cytotechnology 30:85–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parolini N. (2010) Thesis: a model for cell growth in batch reactors, Politenico Di Milano

    Google Scholar 

  • Pearl R, Reed LJ (1920) On the rate of growth of the population of United States since 1790 and its mathematical representation. Proc Natl Acad Sci U S A 6(6):275–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Portner R, Schafer T (1996) Modelling hybridoma cell growth and metabolism- a comparison of selected models and data. J Biotechnol 49:119–135

    CAS  PubMed  Google Scholar 

  • Prajneshu G (1998) A non-linear statistical model for population growth. J Ind Soc Ag Stat 51:73–80

    Google Scholar 

  • Prajneshu G (1999) Non-linear regression models and their applications, Indian Agriculture Statistics Research Institute, Library Avenue, New Delhi

    Google Scholar 

  • Provost A, Bastin G (2004) Dynamic metabolic modelling under the balanced growth condition. J Process Control 14:717–728

    CAS  Google Scholar 

  • Ramakrishna D (1983) A cybernetic perspective of microbial-growth. ACS Symp Ser 207:161–178

    Google Scholar 

  • Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502

    CAS  Google Scholar 

  • Ramirez OT, Mutharasan R (1990) Cell cycle and growth phase dependent variations in the distribution, antibody productivity and oxygen demand in hybridoma cultures. Biotechnol Bioeng 36:839–848

    CAS  PubMed  Google Scholar 

  • Ramkrishna D (1979) Statistical models of cell populations. Adv Biochem Eng 11:1–47

    Google Scholar 

  • Reed LJ PR (1920) On the rate of growth of the population of United States since 1790 and its mathematical representation. Proc Natl Acad Sci U S A 6(6):275–288

    PubMed Central  PubMed  Google Scholar 

  • Reed MC (2004) Why mathematical biology is so hard? Not AMS 51(3):338–342

    Google Scholar 

  • Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1(3):1458–1461

    CAS  PubMed  Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Google Scholar 

  • Ricklefs RE (1968) Patterns of growth in birds. IBIS 110:419–451

    Google Scholar 

  • Rieseberg M, Kasper C, Reardon KF, Scheper T (2001) Flow cytometry in biotechnology. Appl Mocrobial Biotechnol 56:350–360

    CAS  Google Scholar 

  • Riley BS, Li X (2011) Quality by design and process analytical technology for sterile product – where are we now? AAPS PharmSciTech 12(1):114–118

    PubMed Central  PubMed  Google Scholar 

  • Robertson TB (1908) On the normal rate of growth o f an individual and its biochemical significance. Archiv fur Entwicklungsmechanik der Organismem 25:581–614

    CAS  Google Scholar 

  • Roels JA (1983) Unstructured models for growth and product formation in microorganisms. In: Energetics and kinetics in biotechnology. Elsevier, New York

    Google Scholar 

  • Sambanis A, Lodish HF, Stephanopoulos G (1991) A model of secretory protein trafficking in recombinant ART-20 cells. Biotechnol Bioeng 38:280–295

    CAS  PubMed  Google Scholar 

  • Sanderson CS (1997) The development and application of a structured model for animal cell metabolism. PhD thesis, University of Sydney

    Google Scholar 

  • Sanderson CS, Barton GW, Barford JP (1995) Optimisation of animal cell culture media using dynamic simulation. Computer Chem Eng 19:S681–S686

    CAS  Google Scholar 

  • Sanderson CS, Barton GW, Barford JP (1999) A structured, dynamic model for animal cell culture systems. Biochem Eng J 3:203–211

    CAS  Google Scholar 

  • Sauer U, Heinemann M, Zamboni N (2007) GENETICS: getting closer to the whole picture. Science 316(5824):550–551

    CAS  PubMed  Google Scholar 

  • Seamans TC, Hu WS (1990) Kinetics of growth and antibody production by a hybridoma cell line in a perfusion culture. J Ferment Bioeng 70(4):241–245

    CAS  Google Scholar 

  • Sercinoglu O, Barradas O, Portner R (2011) DoE of fed-batch processes, model-based design and experimental evaluation. BMC Proc 5(8):46

    Google Scholar 

  • Shimoyama M, Maeda H, Matsukawa K, Inoue H, Ninomiya T, Ozaki Y (1997) Discrimination of ethylene vinyl acetate copolymers with different composition and prediction of the vinyl acetate content in the copolymers using Fourier-transform Raman spectroscopy and multivariate data analysis. Vib Spectrosc 14:253–259

    CAS  Google Scholar 

  • Shirsat N, Avesh M, English NJ, Glennon B, Al-Rubeaio M (2013) Application of statistical techniques for elucidating flow cytometric data of batch and fed-batch cultures. Biotechnol App Biochem 60(5):536–545

    CAS  Google Scholar 

  • Shirsat N, Avesh M, Whealn J, English NJ, Glennon B, Al-Rubeaio M (2014) Revisiting Verhulst and Monod models: analysis of batch and fed-batch cultures. Cytotechnology. doi:10.1007//s10616-014-9712-s

  • Shivhare M, McCreath G (2010) Practical considerations for DoE implementation in quality by design. Bioprocess Int June:22–30

    Google Scholar 

  • Shuler ML (1999) Single-cell models: promise and limitations. J Biotechnol 71:225–228

    CAS  PubMed  Google Scholar 

  • Shuler ML, Kargi F (1992) Bioprocess engineering: basic concepts. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Sidoli FR, Mantalaris A, Asprey SP (2004) Modelling of mammalian cells and cell culture processes. Cytotechnology 44(1–2):27–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sidoli FR, Asprey SP, Mantlaris A (2006) A coupled single cell-population-balance model for mammalian cell cultures. Ind Eng Chem Res 45:5801–58811

    CAS  Google Scholar 

  • Smith M (1974) Models in ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Spillman WJ, Lang E (1924) The law of diminishing increment. Yonkers World, New York, pp 1–26

    Google Scholar 

  • Springate SD (2011) The effect of sample size and bias on the reliability of estimates of error: a comparative study of Dahlberg’s formula. Oxford J 34(2):158–163

    Google Scholar 

  • Srienc F (1999) Short communication: cytometric data as the basis for rigorous models of cell population dynamics. J Biotechnol 71:233–238

    CAS  Google Scholar 

  • Stephenopoulos G, Aristidou AA, Nielson J (1998) Metabolic engineering principles and methodologies. Academic Press, San Diego

    Google Scholar 

  • Stowe RA, Mayer RP (1966) Efficient screening of process variables. Ind Eng Chem 58(2):36–40

    CAS  Google Scholar 

  • Suzuki E, Ollis DF (1989) Cell cycle model for antibody production kinetics. Biotechnol Bioeng 35:1398–1402

    Google Scholar 

  • Suzuki E, Ollis DF (1990) Enhanced antibody production at slowed rates: experimental demonstration and a simple structured model. Biotechnol Prog 6:231–236

    CAS  PubMed  Google Scholar 

  • Suzuki T, Sakino Y, Nakajima M, Asama H, Fujii T, Sato K, Kaetsu H, Endo J (1997) A novel man-machine interface for a bioprocess expert system constructed for cooperative decision making and operation. J Biotechnol 52(3):277–282

    Google Scholar 

  • Syu M-J, Tsao GT (1993) Neural network modified of batch cell growth pattern. Biotechnol Bioeng 42:376–380

    CAS  PubMed  Google Scholar 

  • Takamatsu T, Shioya S, Chakatani H (1985) Comparison of simple population models in a baker’s yeast fed-batch culture. Chem Eng Prog Symp Ser 40:499–507

    CAS  Google Scholar 

  • Tatiraju S, Soroush M, Mutharassan R (1999) Multi-rate nonlinear state and parameter estimation in a bioreactor. Biotech Bioeng 63(1):22–32

    CAS  Google Scholar 

  • Teng ELW, Samyudia Y (2011) 2010 International conference in biology environment and chemistry IPCBEE vol 1, IACSIT, Press Singapore

    Google Scholar 

  • Torbeck L, Branning R (2009) QbD convincing the skeptics. BioPharm Int 22:52–58

    Google Scholar 

  • Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Muller D (2006) Process parameter shifting: part II. Biphasic cultivation – a tool for enhancing the volumetric productivity of batch processes using Epo-Fc expressing CHO cells. Biotechnol Bioeng 94:1045–1052

    CAS  PubMed  Google Scholar 

  • Tsao GT, Hansen TP (1975) Extended Monod equation for batch culture with multiple exponential phases. Biotechnol Bioeng 17(11):1591–1598

    Google Scholar 

  • Tsoularis A, Wallace J (2002) Analysis of logistic growth models. Math Biosci 179:21–53

    CAS  PubMed  Google Scholar 

  • Tsuchiya HM, Fredrickson AG, Aris R (1966) Dynamics of microbial cell populations. Adv Chem Eng 6:125–206

    CAS  Google Scholar 

  • Tziampazis E, Sambanis A (1994) Modelling of cell culture processes. Cytotechnology 14:191–204

    CAS  PubMed  Google Scholar 

  • Uber R, Frerichs JG, Beutel S (2003) Optical sensor systems for bioprocess monitoring. Anal Bioanal Chem 376(3):342–348

    Google Scholar 

  • Umana P, Bailey JE (1997) A mathematical model of N-linked glycoform biosynthesis. Biotechnol Bioeng 55(6):890–908

    CAS  PubMed  Google Scholar 

  • Ündey C (2004) Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations. J Biotechnol 108(1):64–77

    Google Scholar 

  • Van Breusegem V, Thiboult J, Cheruy A (1991) Adaptive neural models for on-line prediction of fermentation. Can J Chem Eng 69:481–487

    Google Scholar 

  • Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A Quetelet, Brussels 10:113–121

    Google Scholar 

  • Verhulst PF (1847) Deuxieme memoire sur la loi d’accroissement de la population. Mem Acad R Sci Lett B-Arts Belg 20:142–173

    Google Scholar 

  • Villadsen J (1999) Short Communication. On the use of population balances. J Biotechnol 71:251–253

    CAS  Google Scholar 

  • Votruba J, Volesky B, Yerushalmi L (1985) Mathematical model of batch acetones-butanol fermentation. Biotechnol Bioeng 28:247–255

    Google Scholar 

  • Wan XR, Zhong WQ, Wang MJ (1998a) New flexible growth equation and its application to the growth o f small mammals. Growth Dev Aging 62:27–36

    CAS  PubMed  Google Scholar 

  • Wan XR, Zhong WQ, Wang MJ (1998b) Ecology and management of rodent pest on the Brandt vole (Microtus brandti). In: Zhang ZB, Wang ZW (eds) Tin: ecology and management of rodent pests in agriculture. Ocean Press, Beijing, pp 209–220, I (In Chinese)

    Google Scholar 

  • Wan X, Wang M, Wang G, Zhong W (2000) A new four-parameter, generalized logistic equation and its applications to mammalian somatic growth. Acta Theriol 45(2):145–153

    Google Scholar 

  • Wang L, Hatzimanikates W (2006) Metabolic engineering under uncertainty. I: Framework development. Metabolic Eng 8(2):133–141

    Google Scholar 

  • Warnes MR, Glassey J, Montague GA, Kara B (1998) Application of radial basis function and feed forward artificial network to the Escherichia coli fermentation process. Neurocomputing 20:67–82

    Google Scholar 

  • Whelan J, Keogh D (2012) ABB review 1/12

    Google Scholar 

  • Whelan J, Craven S, Glennon B (2012) In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol Prog 28(5):1355–1362

    CAS  PubMed  Google Scholar 

  • Whitford WG (2006) Fed-batch mammalian cell culture in bioproduction. Bioprocess Int 2006:30–40

    Google Scholar 

  • Wilkinson DJ (2009) Stochastic modelling for quantitative description of heterogeneous system. Nat Rev Genet 10(2):122–133

    CAS  PubMed  Google Scholar 

  • Xie L, Wang DIC (1995) Application of improved stoichiometric model in medium design and fed-batch cultivation of animal cells in bioreactor. Cytotechnology 15:17–29

    Google Scholar 

  • Yoon J-H, Kim H, Kang KH, Oh T-K, Park Y-H (2003a) Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb nov. Int J Syst Evol Microbiol 53:1357–1361

    CAS  PubMed  Google Scholar 

  • Yoon J-H, Kim I-G, Shin D-Y, Kang KH, Park Y-H (2003b) Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53:53–57

    CAS  PubMed  Google Scholar 

  • Zelic B, Bolf N, Vasic-Racki D (2006) Modelling of the pyruvate production with Escherichia coli: comparison of mechanistic and neural networks-based models. Bioprocess Biosyst Eng 29:39–47

    CAS  PubMed  Google Scholar 

  • Zhou F, Bi J, Zeng A, Yuan J (1997) Alteration of mammalian cell metabolism by dynamic nutrient feeding. Cytotechnology 24:99–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zorzetto LFM, Wilson JA (1996) Monitoring bioprocesses using hybrid models and an extended Kalman filter. Comput Chem Eng Comput Chem Eng 20:S689–S694

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Al-Rubeai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shirsat, N.P., English, N.J., Glennon, B., Al-Rubeai, M. (2015). Modelling of Mammalian Cell Cultures. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_10

Download citation

Publish with us

Policies and ethics