Skip to main content

Estimation of Process Model Parameters

  • Protocol
  • First Online:
Animal Cell Biotechnology

Abstract

Cell culture technology has become a substantial domain of modern biotechnology, particularly in the pharmaceutical market. Today, products manufactured from cells itself dominate the biopharmaceutical industry. In addition, a limited number of products made of in vitro cultivated cells for regenerative medicine were launched to the market. Modeling of such processes is an important task since these systems are usually nonlinear and complex. In this chapter, a framework for the estimation of process model parameters and its implementation is shown. It is aimed to support the parameter estimation task, which increases the potential of implementation and improvement of mathematical process models into the novel and existing bioprocesses. Apart from the parameter estimation, evaluation of the estimated parameters plays an essential role in order to verify these parameters and subsequently the selected model. The workflow is outlined and shown specifically on the basis of a mathematical process model describing a mammalian cell culture batch process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIC:

Akaike information criterion

BIC:

Bayesian information criterion

GSA:

Global sensitivity analysis

LSA:

Local sensitivity analysis

NRMSD:

Normalized root mean square deviation

ODE:

Ordinary differential equations

c Glc :

Glucose concentration (mmol L−1)

c Gln :

Glutamine concentration (mmol L−1)

k Glc :

Monod kinetic constant for glucose uptake (mmol L−1)

k Gln :

Monod kinetic constant for glutamine uptake (mmol L−1)

K S,Glc :

Monod kinetic constant for glucose (mmol L−1)

K S,Gln :

Monod kinetic constant for glutamine (mmol L−1)

q Glc :

Cell-specific glucose uptake rate (mmol cell−1 h−1)

q Glc,max :

Maximum cell-specific glucose uptake rate (mmol cell−1 h−1)

q Gln :

Cell-specific glutamine uptake rate (mmol cell−1 h−1)

q Gln,max :

Maximum cell-specific glutamine uptake rate (mmol cell−1 h−1)

X v :

Viable cell concentration (cells L−1)

μ d :

Cell-specific death rate (h−1)

μ d,min :

Minimum cell-specific death rate (h−1)

μ :

Cell-specific growth rate (h−1)

μ max :

Maximum cell-specific growth rate (h−1)

A :

Constant matrix with 1 and 0 on diagonal

f(∙) :

Vector function

F(θ):

Objective function depending on parameter vector θ

g():

m-Dimensional mapping of the state variables to the measurements

L :

Number of state variables

M :

Number of measurands

N :

Number of measurements

p :

Vector of all model parameters

p unknown :

Vector of unknown model parameters

R 2 :

Coefficient of determination, R-Squared

t :

Time

t 0 :

Starting time

t e :

End time

u :

External input signal or signals

w :

A weighting vector

x :

A vector of the state variables

x 0 :

Initial state vector

y i :

Measured data

yk(ti):

Measurement of the k-th measurand in time ti

\( \hat{y_k}\left(\hat{\boldsymbol{\theta}},{t}_i\right) \) :

Estimation of the k-th measurand at the time ti, depending on parameter estimate \( \hat{\boldsymbol{\theta}} \)

\( \overline{y_{\mathrm{m}}} \) :

Average of measured data

\( \overline{y_{\mathrm{s}}} \) :

Average of simulated observable

\( {\sigma}_{ki}^2 \) :

Variance of the k-th measurement at point in time ti

θ :

Parameter vector of unknown model parameter values and initial state vector

\( \hat{\boldsymbol{\theta}} \) :

Estimated parameter vector

References

  1. Frahm B (2014) Seed train optimization for cell culture. In: Pörtner R (ed) Animal cell biotechnology. Humana Press, Totowa, NJ, pp 355–367. https://doi.org/10.1007/978-1-62703-733-4_22

    Chapter  Google Scholar 

  2. Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG (2009) Systems biology: parameter estimation for biochemical models. FEBS J 276(4):886–902. https://doi.org/10.1111/j.1742-4658.2008.06844.x

    Article  CAS  PubMed  Google Scholar 

  3. Kern S, Platas-Barradas O, Pörtner R, Frahm B (2016) Model-based strategy for cell culture seed train layout verified at lab scale. Cytotechnology 68(4):1019–1032

    Article  Google Scholar 

  4. Frahm B, Lane P, Atzert H, Munack A, Hoffmann M, Hass VC, Pörtner R (2002) Adaptive, model-based control by the open-loop-feedback-optimal (OLFO) controller for the effective fed-batch cultivation of hybridoma cells. Biotechnol Progr 18:1095–1103. https://doi.org/10.1021/bp020035y

    Article  CAS  Google Scholar 

  5. Anderson DR, Burnham K (2004) Model selection and multi-model inference. Springer, NY

    Google Scholar 

  6. Witte VC (1996) Mathematische Modellierung und adaptive Prozeßsteuerung der Kultivierung von Cyathus striatus, Dissertation, Fortschr.-Ber. VDI, Reihe 17, Nr. 144, VDI-Verlag, Düsseldorf

    Google Scholar 

  7. Brüning S, Gerlach I, Pörtner R, Mandenius CF, Hass VC (2017) Modeling suspension cultures of microbial and mammalian cells with an adaptable six-compartment model. Chem Eng Technol 40(5):956–966. https://doi.org/10.1002/ceat.201600639

    Article  CAS  Google Scholar 

  8. Hernández Rodríguez T, Frahm B (2019) Design, optimization and adaptive control of cell culture seed trains. In: Pörtner R (ed) Methods in molecular biology – animal cell biotechnology, 4th edn. Springer, New York. https://doi.org/10.1002/bit.27125

    Google Scholar 

  9. Möller J, Kuchemüller KB, Steinmetz T, Koopmann KS, Pörtner R (2019) Model-assisted design of experiments as a concept for knowledge-based bioprocess development. Bioprocess Biosyst Eng 42(5):867–882. https://doi.org/10.1007/s00449-019-02089-7

    Google Scholar 

  10. Martens DE, van den End EJ (2007) Configuration of bioreactors. In: Pörtner R (ed) Animal cell biotechnology. Humana Press, Totowa, NJ, pp 371–393

    Chapter  Google Scholar 

  11. MATLAB and Statistics Toolbox Release (2018) The MathWorks, Inc., Natick, MA. USA. URL: https://www.mathworks.com/products/matlab.html. [Last access: 10.10.2019]

    Google Scholar 

  12. Eaton JW, Bateman D, Hauberg S, Wehbring R (2014) GNU Octave version 5.1.0: a high-level interactive language for numerical computations. CreateSpace Independent Publishing Platform

    Google Scholar 

  13. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL http://www.R-project.org. [Last access: 12.03.2019].

  14. IMSL Numerical Libraries, Rogue Wave Software, Inc., Louisville, CO, 1989–2019

    Google Scholar 

  15. The NAG Library, The Numerical Algorithms Group (NAG), Oxford, United Kingdom, www.nag.com, 2019

  16. Pörtner R, Schäfer T (1996) Modelling hybridoma cell growth and metabolism – a comparison of selected models and data. J Biotechnol 49:119–135

    Article  Google Scholar 

  17. Higuera G, Schop D, Janssen F, van Dijkhuizen-Radersma R, van Boxtel T, van Blitterswijk CA (2009) Quantifying in vitro growth and metabolism kinetics of human mesenchymal stem cells using a mathematical model. Tissue Eng A 15(9):2653–2663. https://doi.org/10.1089/ten.tea.2008.0328

    Article  CAS  Google Scholar 

  18. Möhler L, Bock A, Reichl U (2008) Segregated mathematical model for growth of anchorage-dependent MDCK cells in microcarrier culture. Biotechnol Progr 24:110–119. https://doi.org/10.1021/bp0701923

    Article  CAS  Google Scholar 

  19. Kroll P, Hofer A, Stelzer IV, Herwig C (2017) Workflow to set up substantial target-oriented mechanistic process models in bioprocess engineering. Process Biochem 62:24–36. https://doi.org/10.1016/j.procbio.2017.07.017

    Google Scholar 

  20. Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J Assoc Comput Mach 8:212–229

    Article  Google Scholar 

  21. WinErs: Prozessautomatisierung auf PC unter Windows, Ingenieurbüro Dr.-Ing.Schoop GmbH (2019) www.schoop.de

  22. Nelder JA, Mead R (1965) A simplex method for function minimization. Comp J 7:308–313

    Article  Google Scholar 

  23. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  Google Scholar 

  24. Lawler EL, Wood DE (1966) Branch-and-bound methods: a survey. Oper Res 14(4):699–719. https://doi.org/10.1287/opre.14.4.699

    Article  Google Scholar 

  25. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes. In: The art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  26. Kennedy J (2010) Particle swarm optimization. In: Encyclopaedia of machine learning. Springer, New York, pp 760–766. https://doi.org/10.1007/978-1-4899-7687-1_630

    Chapter  Google Scholar 

  27. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics (Oxford, England) 25(15):1923–1929

    Article  CAS  Google Scholar 

  28. Daume S, Kofler S, Kager J, Kroll P, Herwig C (2019) Generic Workflow for the setup of mechanistic process models. In: Pörtner R (ed) Methods in molecular biology – animal cell biotechnology, 4th edn. Springer, New York

    Google Scholar 

  29. Sin G, Gernaey KV, Lantz AE (2009) Good modeling practice for pat applications: propagation of input uncertainty and sensitivity analysis. Biotechnol Prog 25(4):1043–1053

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Example data and code provided by JM, tested and improved by THR. Parameter estimation itself has been established and used for many years within the groups of VCH, RP, and BF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Frahm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deppe, S. et al. (2020). Estimation of Process Model Parameters. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 2095. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0191-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0191-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0190-7

  • Online ISBN: 978-1-0716-0191-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics