Skip to main content

Effects of Malaria Products on Human Monocyte and Neutrophil Degranulation and Lysozyme Release

  • Chapter
  • First Online:
Human and Mosquito Lysozymes

Abstract

Plasmodium parasites are able to detoxify high amounts of heme in human red blood cells through biocrystallization into malarial pigment hemozoin (Hz), which is avidly phagocytosed by human monocytes and neutrophils. As a consequence of phagocytosis, the phenotype of these cells is dramatically altered and their functions are seriously impaired. Hz induces quite immediately an enhanced release of lysozyme, stored in the so-called gelatinase granules, and promotes complete degranulation at later time points. Hz-dependent lysozyme release has been recently investigated in a series of recent studies. Among several proinflammatory molecules, TNF-α, IL-1β, and MIP-1α/CCL3 have been indicated as potential soluble mediators of Hz-dependent lysozyme upregulation. The mechanisms of signal transduction underlying such an enhancement have also been investigated, suggesting a potential role for p38 mitogen-activated protein kinase and nuclear factor-kappaB transcriptional pathways. Finally, a major role in lysozyme release has been suggested for the lipid moiety of Hz. Interestingly, 15-HETE, a major lipoperoxidation product of Hz, was strongly supported to be the main actor in these events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldieri E, Atragene D, Bergandi L et al (2003) Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett 552:141–144

    Article  PubMed  CAS  Google Scholar 

  • Bajpai AK, Blaskova E, Pakala SB et al (2007) 15(S)-HETE production in human retinal microvascular endothelial cells by hypoxia: novel role for MEK1 in 15(S)-HETE induced angiogenesis. Invest Ophthalmol Vis Sci 48(11):4930–4938

    Article  PubMed  Google Scholar 

  • Berger M, Wetzler EM, Wallis RS (1988) Tumor necrosis factor is the major monocyte product that increases complement receptor expression on mature human neutrophils. Blood 71:151–158

    PubMed  CAS  Google Scholar 

  • Bokoch GM, Reed PW (1981) Effect of various lipoxygenase metabolites of arachidonic acid on degranulation of polymorphonuclear leukocytes. J Biol Chem 256(11):5317–5320

    PubMed  CAS  Google Scholar 

  • Borregaard N (1997) Development of neutrophil granule diversity. Ann N Y Acad Sci 832:62–68

    Article  PubMed  CAS  Google Scholar 

  • Burrows JN, Chibale K, Wells TN (2011) The state of the art in anti-malarial drug discovery and development. Curr Top Med Chem 11:1226–1254

    Article  PubMed  CAS  Google Scholar 

  • Cabrero A, Laguna JC, Vázquez M (2002) Peroxisome proliferator-activated receptors and the control of inflammation. Curr Drug Targets Inflamm Allergy 1(3):243–248

    Article  PubMed  CAS  Google Scholar 

  • Cambos M, Bazinet S, Abed E et al (2010) The IL-12p70/IL-10 interplay is differentially regulated by free heme and hemozoin in murine bone-marrow-derived macrophages. Int J Parasitol 40:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Chava KR, Karpurapu M, Wang D et al (2009) CREB-mediated IL-6 expression is required for 15(S)-hydroxyeicosatetraenoic acid-induced vascular smooth muscle cell migration. Arterioscler Thromb Vasc Biol 29(6):809–815

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen F, Wang X, Li J et al (2008) 12-lipoxygenase induces apoptosis of human gastric cancer AGS cells via the ERK1/2 signal pathway. Dig Dis Sci 53:181–187

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Wu CC, Gotlinger KH et al (2010) 20-hydroxy-5,8,11,14-eicosatetraenoic acid mediates endothelial dysfunction via IkappaB kinase-dependent endothelial nitric-oxide synthase uncoupling. J Pharmacol Exp Ther 332(1):57–65

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ciacci C, Betti M, Canonico B et al (2010) Specificity of anti-Vibrio immune response through p38 MAPK and PKC activation in the hemocytes of the mussel Mytilus galloprovincialis. J Invertebr Pathol 105:49–55

    Article  PubMed  CAS  Google Scholar 

  • Dasari P, Reiss K, Lingelbach K et al (2011) Digestive vacuoles of Plasmodium falciparum are selectively phagocytosed by and impair killing function of polymorphonuclear leukocytes. Blood 118:4946–4956

    Article  PubMed  CAS  Google Scholar 

  • Dell’agli M, Galli GV, Bulgari M et al (2010) Ellagitannins of the fruit rind of pomegranate (Punica granatum) antagonize in vitro the host inflammatory response mechanisms involved in the onset of malaria. Malar J 9:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Mari JF, Saada JI, Mifflin RC et al (2007) HETEs enhance IL-1-mediated COX-2 expression via augmentation of message stability in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 293:G719–G728

    Article  PubMed  Google Scholar 

  • Egan TJ (2008) Haemozoin formation. Mol Biochem Parasitol 157:127–136

    Article  PubMed  CAS  Google Scholar 

  • Fiori PL, Rappelli P, Mirkarimi SN et al (1993) Reduced microbicidal and anti-tumour activities of human monocytes after ingestion of Plasmodium falciparum infected red blood cells. Parasite Immunol 15:647–655

    Article  PubMed  CAS  Google Scholar 

  • Flohé L, Brigelius-Flohé R, Saliou C et al (1997) Redox regulation of NF-kappa B activation. Free Radic Biol Med 22:1115–1126

    Article  PubMed  Google Scholar 

  • García-Piñeres AJ, Castro V, Mora G et al (2001) Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 276:39713–39720

    Article  PubMed  Google Scholar 

  • Giribaldi G, Ulliers D, Schwarzer E et al (2004) Hemozoin- and 4-hydroxynonenal-mediated inhibition of erythropoiesis. Possible role in malarial dyserythropoiesis and anemia. Haematologica 89:492–493

    PubMed  CAS  Google Scholar 

  • Giribaldi G, Prato M, Ulliers D et al (2010) Involvement of inflammatory chemokines in survival of human monocytes fed with malarial pigment. Infect Immun 78:4912–4921

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Giribaldi G, Valente E, Khadjavi A et al (2011) Macrophage inflammatory protein-1alpha mediates matrix metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment. Asian Pac J Trop Med 4:925–930

    Article  PubMed  CAS  Google Scholar 

  • Goetzl EJ, Pickett WC (1980) The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs). J Immunol 125(4):1789–1791

    PubMed  CAS  Google Scholar 

  • Griffith JW, Sun T, McIntosh MT et al (2009) Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol 183:5208–5220

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hashimoto T, Kihara M, Yokoyama K et al (2003) Lipoxygenase products regulate nitric oxide and inducible nitric oxide synthase production in interleukin-1beta stimulated vascular smooth muscle cells. Hypertens Res 26(2):177–184

    Article  PubMed  CAS  Google Scholar 

  • Huang JT, Welch JS, Ricote M et al (1999) Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400(6742):378–382

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka T, Cheng J, Singh H et al (2008) 20-Hydroxyeicosatetraenoic acid stimulates nuclear factor-kappaB activation and the production of inflammatory cytokines in human endothelial cells. J Pharmacol Exp Ther 324(1):103–110

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo M, Gowda DC, Radzioch D et al (2003) Hemozoin increases IFN-gamma-inducible macrophage nitric oxide generation through extracellular signal-regulated kinase- and NF-kappa B-dependent pathways. J Immunol 171:4243–4253

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo M, Godbout M, Olivier M (2005) Hemozoin induces macrophage chemokine expression through oxidative stress-dependent and -independent mechanisms. J Immunol 174:475–484

    Article  PubMed  CAS  Google Scholar 

  • Khalid SA, Farouk A, Geary TG et al (1986) Potential antimalarial candidates from African plants: and in vitro approach using Plasmodium falciparum. J Ethnopharmacol 15:201–209

    Article  PubMed  CAS  Google Scholar 

  • Lewis CE, McCarthy SP, Lorenzen J et al (1990) Differential effects of LPS, IFN-gamma and TNF alpha on the secretion of lysozyme by individual human mononuclear phagocytes: relationship to cell maturity. Immunology 69:402–408

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu Z, Serghides L, Patel SN et al (2006) Disruption of JNK2 decreases the cytokine response to Plasmodium falciparum glycosylphosphatidylinositol in vitro and confers protection in a cerebral malaria model. J Immunol 177:6344–6352

    Article  PubMed  CAS  Google Scholar 

  • Lucchi NW, Peterson DS, Moore JM (2008) Immunologic activation of human syncytiotrophoblast by Plasmodium falciparum. Malar J 7:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucchi NW, Sarr D, Owino SO et al (2011) Natural hemozoin stimulates syncytiotrophoblast to secrete chemokines and recruit peripheral blood mononuclear cells. Placenta 32:579–585

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mohamed AO, Elbashir MI, Ibrahim G et al (1996) Neutrophil leucocyte activation in severe malaria. Trans R Soc Trop Med Hyg 90:277

    Article  PubMed  CAS  Google Scholar 

  • Mohammed AO, Elghazali G, Mohammed HB et al (2003) Human neutrophil lipocalin: a specific marker for neutrophil activation in severe Plasmodium falciparum malaria. Acta Trop 87:279–285

    Article  PubMed  CAS  Google Scholar 

  • Nair MP, Mahajan S, Reynolds JL et al (2006) The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kappa beta system. Clin Vaccine Immunol 13:319–328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Natarajan R, Yang DC, Lanting L et al (2002) Key role of P38 mitogen-activated protein kinase and the lipoxygenase pathway in angiotensin II actions in H295R adrenocortical cells. Endocrine 18(3):295–301

    Article  PubMed  CAS  Google Scholar 

  • Nieves D, Moreno JJ (2008) Enantioselective effect of 12(S)-hydroxyeicosatetraenoic acid on 3T6 fibroblast growth through ERK 1/2 and p38 MAPK pathways and cyclin D1 activation. Biochem Pharmacol 76(5):654–661

    Article  PubMed  CAS  Google Scholar 

  • O’Flaherty JT, Thomas MJ (1985) Effect of 15-lipoxygenase-derived arachidonate metabolites on human neutrophil degranulation. Prostaglandins Leukot Med 17(2):199–212

    Article  PubMed  Google Scholar 

  • Pichyangkul S, Saengkrai P, Webster HK (1994) Plasmodium falciparum pigment induce monocytes to release high levels of tumor necrosis factor-α and interleukin-1β. Am J Trop Med Hyg 51:430–435

    PubMed  CAS  Google Scholar 

  • Polimeni M, Prato M (2014) Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood-brain barrier integrity? Fluids Barriers CNS 11(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Polimeni M, Valente E, Aldieri E et al (2012) Haemozoin induces early cytokine-mediated lysozyme release from human monocytes through p38 MAPK- and NF-kappaB-dependent mechanisms. PLoS One 7(6):e39497

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Polimeni M, Valente E, Ulliers D et al (2013a) Natural haemozoin induces expression and release of human monocyte tissue inhibitor of metalloproteinase-1. PLoS One 8(8):e71468

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Polimeni M, Valente E, Aldieri E et al (2013b) Role of 15-hydroxyeicosatetraenoic acid in hemozoin-induced lysozyme release from human adherent monocytes. Biofactors 39(3):304–314

    Article  PubMed  CAS  Google Scholar 

  • Prato M (2011) Malarial pigment does not induce MMP-2 and TIMP-2 protein release by human monocytes. Asian Pac J Trop Med 4:756

    Article  PubMed  Google Scholar 

  • Prato M (2012) Human and mosquito lysozymes in malaria: old molecules for new approaches towards diagnosis, therapy and vector control. J Bacteriol Parasitol 3:e113

    Google Scholar 

  • Prato M, Giribaldi G (2011) Matrix metalloproteinase-9 and haemozoin: wedding rings for human host and Plasmodium falciparum parasite in complicated malaria. J Trop Med 2011:628435

    Article  PubMed  PubMed Central  Google Scholar 

  • Prato M, Giribaldi G, Polimeni M et al (2005) Phagocytosis of hemozoin enhances matrix metalloproteinase-9 activity and TNF-alpha production in human monocytes: role of matrix metalloproteinases in the pathogenesis of falciparum malaria. J Immunol 175:6436–6442

    Article  PubMed  CAS  Google Scholar 

  • Prato M, Gallo V, Giribaldi G et al (2008) Phagocytosis of haemozoin (malarial pigment) enhances metalloproteinase-9 activity in human adherent monocytes: role of IL-1β and 15-HETE.Malar J 7:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Prato M, Giribaldi G, Arese P (2009) Hemozoin triggers tumor necrosis factor alpha-mediated release of lysozyme by human adherent monocytes: new evidences on leukocyte degranulation in P. falciparum malaria. Asian Pac J Trop Med 2:35–40

    Google Scholar 

  • Prato M, Gallo V, Giribaldi G et al (2010a) Role of the NF-κB transcription pathway in the haemozoin- and 15-HETE-mediated activation of matrix metalloproteinase-9 in human adherent monocytes. Cell Microbiol 12:1780–1791

    Article  PubMed  CAS  Google Scholar 

  • Prato M, Gallo V, Valente E et al (2010b) Malarial pigment enhances Heat Shock Protein-27 in THP-1 cells: new perspectives for in vitro studies on monocyte apoptosis prevention. Asian Pac J Trop Med 3:934–938

    Article  CAS  Google Scholar 

  • Schwarzer E, Turrini F, Ulliers D et al (1992) Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J Exp Med 176:1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Schwarzer E, Turrini F, Giribaldi G et al (1993) Phagocytosis of P. falciparum malarial pigment hemozoin by human monocytes inactivates monocyte protein kinase C. Biochim Biophys Acta 1181:51–54

    Article  PubMed  CAS  Google Scholar 

  • Schwarzer E, Kuhn H, Valente E et al (2003) Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood 101:722–728

    Article  PubMed  CAS  Google Scholar 

  • Scorza T, Magez S, Brys L et al (1999) Hemozoin is a key factor in the induction of malaria-associated immunosuppression. Parasite Immunol 21:545–554

    Article  PubMed  CAS  Google Scholar 

  • Serghides L, Patel SN, Ayi K et al (2009) Rosiglitazone modulates the innate immune response to Plasmodium falciparum infection and improves outcome in experimental cerebral malaria. J Infect Dis 199:1536–1545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sharma G, Ottino P, Bazan N et al (2005) Epidermal and hepatocyte growth factors, but not keratinocyte growth factor, modulate protein kinase Calpha translocation to the plasma membrane through 15(S)-hydroxyeicosatetraenoic acid synthesis. J Biol Chem 280:7917–7924

    Article  PubMed  CAS  Google Scholar 

  • Sherry BA, Alava G, Tracey KJ et al (1995) Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo. J Inflamm 45(2):85–96

    PubMed  CAS  Google Scholar 

  • Shio MT, Kassa FA, Bellemare MJ et al (2010) Innate inflammatory response to the malarial pigment hemozoin. Microbes Infect 12:889–899

    Article  PubMed  CAS  Google Scholar 

  • Smith RJ, Sun FF, Iden SS et al (1981) An evaluation of the relationship between arachidonic acid lipoxygenation and human neutrophil degranulation. Clin Immunol Immunopathol 20(2):157–169

    Article  PubMed  CAS  Google Scholar 

  • Smith H, Wyke S, Tisdale M (2004) Role of protein kinase C and NF-kappaB in proteolysis-inducing factor-induced proteasome expression in C(2)C(12) myotubes. Br J Cancer 90:1850–1857

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stenson WF, Parker CW (1980) Monohydroxyeicosatetraenoic acids (HETEs) induce degranulation of human neutrophils. J Immunol 124(5):2100–2104

    PubMed  CAS  Google Scholar 

  • Sue-A-Quan AK, Fialkow L, Vlahos CJ et al (1997) Inhibition of neutrophil oxidative burst and granule secretion by wortmannin: potential role of MAP kinase and renaturable kinases. J Cell Physiol 172:94–108

    Article  PubMed  CAS  Google Scholar 

  • Urban BC, Todryk S (2006) Malaria pigment paralyzes dendritic cells. J Biol 5(2):4

    Article  PubMed  PubMed Central  Google Scholar 

  • van Phi L (1996) Transcriptional activation of the chicken lysozyme gene by NF-kappa Bp65 (RelA) and c-Rel, but not by NF-kappa Bp50. Biochem J 313(1):39–44

    Google Scholar 

  • Verma I, Stevenson J (1997) IkappaB kinase: beginning, not the end. Proc Natl Acad Sci U S A 94:11758–11760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wen Y, Gu J, Chakrabarti SK et al (2007) The role of 12/15-lipoxygenase in the expression of interleukin-6 and tumor necrosis factor-alpha in macrophages. Endocrinology 148(3):1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Wen Y, Gu J, Vandenhoff GE et al (2008) Role of 12/15-lipoxygenase in the expression of MCP-1/CCL2 in mouse macrophages. Am J Physiol Heart Circ Physiol 294(4):H1933–H1938

    Article  PubMed  CAS  Google Scholar 

  • Wyke S, Khal J, Tisdale M (2005) Signalling pathways in the induction of proteasome expression by proteolysis-inducing factor in murine myotubes. Cell Signal 17:67–75

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Wu X, Goel S et al (2009) MAPK-activated protein kinase 2 differentially regulates plasmodium falciparum glycosylphosphatidylinositol-induced production of tumor necrosis factor-{alpha} and interleukin-12 in macrophages. J Biol Chem 284:15750–15761

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Polimeni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polimeni, M., Giribaldi, G., Prato, M. (2015). Effects of Malaria Products on Human Monocyte and Neutrophil Degranulation and Lysozyme Release. In: Prato, M. (eds) Human and Mosquito Lysozymes. Springer, Cham. https://doi.org/10.1007/978-3-319-09432-8_5

Download citation

Publish with us

Policies and ethics