Skip to main content

Bio-inspired Sensors for Structural Health Monitoring

  • Chapter
  • First Online:
Biotechnologies and Biomimetics for Civil Engineering

Abstract

Structural systems are susceptible to damage throughout their operational lifetime. Thus, structural health monitoring technologies and, in particular, sensors that could monitor structural performance and detect damage are needed. While there exist a variety of different sensing platforms, this continues to be an active area of research due to the many challenges associated with identifying and quantifying structural damage, which is inherently very complex. This chapter discusses an emerging area of sensors research in which sensor design or functionality is inspired by biological systems. By borrowing concepts from and learning how nature’s creations sense and interact with its environment, the goal is to create novel sensors with unparalleled performance as compared to the current state-of-art. This chapter is not meant to be an exhaustive literature review on this topic. Rather, only a small selection of published work is sampled and presented to showcase different ideas and the breadth of research. Topics ranging from bio-inspired algorithms, creature-like robots, and skin-like sensors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi M, Bin Abd Latiff MS, Chizari H (2014) Bioinspired evolutionary algorithm based for improving network coverage in wireless sensor networks. Sci World J 2014:8

    Google Scholar 

  • Akiba T, Lee N, Mita A (2013) Sensor agent robot with servo-accelerometer for structural health monitoring. Key Eng Mater 558:289–296

    Article  Google Scholar 

  • Azhari F, Benassini J, Tom C, Loh KJ, Bombardelli FA (2014) Design and characterization of a piezoelectric sensor for monitoring scour hole evolution. In: SPIE—21st annual symposium on smart structures and materials and nondestructive evaluation and health monitoring, SPIE, San Diego, CA

    Google Scholar 

  • Bai S, Li X, Xie Z, Zhou Z, Ou J (2014) A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique. Sensors 14:4364–4383

    Article  Google Scholar 

  • Balaguer C, Gimenez A, Jardon A (2005) Climbing robots’ mobility for inspection and maintenance of 3D complex environments. Auton Robots 18:157–169

    Article  Google Scholar 

  • Bar-Cohen Y (ed) (2006) Biomimetics: biologically inspired technologies. CRC Press, Boca Raton

    Google Scholar 

  • Biezma MV, Schanack F (2007) Collapse of steel bridges. J Perform Constructed Facil 21:398–405

    Article  Google Scholar 

  • Boller C (2000) Next generation structural health monitoring and its integration into aircraft design. Int J Syst Sci 31:1333–1349

    Article  MATH  Google Scholar 

  • Borcea L (2002) Electrical impedance tomography. Inverse Problems, 18

    Google Scholar 

  • Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27:97–108

    Article  Google Scholar 

  • Böger L, Wichmann MHG, Meyer LO, Schulte K (2008) Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos Sci Technol 68:1886–1894

    Article  Google Scholar 

  • Celebi M (2002) Seismic instrumentation of buildings (with emphasis on federal buildings). United States Geological Survey, Menlo Park, CA

    Google Scholar 

  • Celebi M (2006) Real-time seismic monitoring of the new Cape Giradeau bridge and preliminary analyses of recorded data: an overview. Earthq Spectra 22:609–630

    Article  Google Scholar 

  • Coombs S (2001) Smart skins: information processing by lateral line flow sensors. Auton Robots 11:255–261

    Article  MATH  Google Scholar 

  • Dasgupta D (2006) Advances in artificial immune systems. IEEE Comput Intell Mag 1:40–49

    Article  Google Scholar 

  • Dijkstra M, Barr JJV, Wiegerink RJ, Lammerink TSJ, Boer JHD, Krijnen GJM (2005) Artificial sensor hairs based on the flow sensitive receptor hairs of crickets. J Micromech Microeng 15:S132–S138

    Article  Google Scholar 

  • Dinh-Trong N, Steitz J, Lei B, Kanoun O (2009) Influence of the composition of MWCNTs layers on the properties of strain gauges. In: 9th IEEE conference on nanotechnology Genoa, Italy, pp 477–480

    Google Scholar 

  • Drozda M, Schaust S, Schildt S, Szczerbicka H (2011b) Priming: making the reaction to intrusion or fault predictable. Nat Comput 10:243–274

    Article  MATH  MathSciNet  Google Scholar 

  • Drozda M, Bate I, Timmis J (2011a) Bio-inspired error detection for complex systems. Dependable computing (PRDC), 2011. In: IEEE 17th Pacific rim international symposium, pp 154–163. 12–14 Dec 2011

    Google Scholar 

  • Eberhardt WC, Shakhsheer YA, Calhoun BH, Paulus JR, Appleby MA (2011) Bio-inspired artificial whisker for fluid motion sensing with increased sensitivity and reliability. In: IEEE sensors, Limerick, pp 982–985

    Google Scholar 

  • Enner F, Rollinson D, Choset H (2012) Simplified motion modeling for snake robots. In: IEEE International conference on robotics and automation, St. Paul, MN, pp 4216–4221

    Google Scholar 

  • Enner F, Rollinson D, Choset H (2013) Motion estimation of snake robots in straight pipes. In: IEEE International conference on robotics and automation (ICRA), Karlsruhe, Germany, pp 5149–5153

    Google Scholar 

  • Farrar CR, Worden K (2007) An introduction to structural health monitoring. Philos. Trans. R. Soc. A 365:(1851):303–315

    Google Scholar 

  • Federal Highway Administration (FHWA) (2004) National bridge inspection standards

    Google Scholar 

  • Fisher JW, Kaufmann EJ, Wright W, Xi Z, Tjiang H, Sivakumar B, Edberg W (2001) In: Hoan bridge forensic investigation failure analysis final report. Wisconsin Department of Transportation and the Federal Highway Administration, Madison, WI

    Google Scholar 

  • Gandomi AH, Yun GJ, Yang X-S, Talatahari S (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18:327–340

    Article  MATH  MathSciNet  Google Scholar 

  • Hartle RA, Amrhein WJ, Iii KEW, Baughman DR, Tkacs JJ (1990) Bridge inspector’s training manual/90. Federal Highway Administration, McLean

    Google Scholar 

  • Holder DS (2005) Electrical impedance tomography—methods, history and applications. Institute of Physics Publishing, Bristol, UK

    Google Scholar 

  • Horsley DA, Talin AA, Skinner JL (2008) Micromechanical and microfluidic devices incorporating metallic gratings fabricated using nanoimprint lithography. J Nanophotonics 2:021785/1-11

    Google Scholar 

  • Hou T.-C, Loh KJ, Lynch JP (2007a) Electrical impedance tomography of carbon nanotube composite materials. SPIE, San Diego, CA 652926/1-10

    Google Scholar 

  • Hou TC, Loh KJ, Lynch JP (2007b) Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications. Nanotechnology 18:315501/1-9

    Google Scholar 

  • Hunt J, Timmis J, Cooke E, Neal M, King C (1999) Jisys: the envelopment of an artificial immune system for real world applications. In: Dasgupta D (ed) Artificial immune systems and their applications. Springer, Berlin Heidelberg

    Google Scholar 

  • Huston D, Esser B, Miller J, Wang X (2005) Robotic and mobile sensor systems for structural health monitoring. In: 5th International workshop on structural health monitoring, Stanford, CA, pp 1–8

    Google Scholar 

  • Javadi AA, Farmani R, Tan TP (2005) A hybrid intelligent genetic algorithm. Adv Eng Inform 19:255–262

    Article  Google Scholar 

  • Kang I, Lee JW, Choi GR, Jung JY, Hwang S-H, Choi Y-S, Yoon KJ, Schulz MJ (2006) Structural health monitoring based on electrical impedance of a carbon nanotube neuron. Key Eng Mater 321–323:140–145

    Article  Google Scholar 

  • Kao I, Kumar A, Binder J (2007) Smart MEMS flow sensor: theoretical analysis and experimental characterization. IEEE Sens J 7:713–722

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, Australia, pp 1942–1948

    Google Scholar 

  • Kersey AD (1996) A review of recent developments in fiber optic sensor technology. Opt Fiber Technol 2:291–317

    Article  Google Scholar 

  • Kim DR, Lee CH, Zheng X (2009) Probing flow velocity with silicon nanowire sensors. Nano Lett 9:1984–1988

    Article  Google Scholar 

  • Kirikera GR, Shinde V, Schulz MJ, Ghoshal A, Sundaresan MJ, Allemang RJ, Jong WL (2008) A structural neural system for real-time health monitoring of composite materials. Struct Health Monit 7:65–83

    Google Scholar 

  • Kostopoulos V, Vavouliotis A, Karapappas P, Tsotra P, Paipetis A (2009) Damage monitoring of carbon fiber reinforced laminates using resistance measurements. improving sensitivity using carbon nanotube doped epoxy matrix system. J Intell Mater Syst Struct 20:1025–1034

    Article  Google Scholar 

  • Lee MH, Nicholls HR (1999) Review article tactile sensing for mechatronics—a state of the art survey. Mechatronics 9:1–31

    Article  Google Scholar 

  • Li Z, Dharap P, Nagarajaiah S, Barrera EV, Kim JD (2004) Carbon nanotube film sensors. Adv Mater 16:640–643

    Article  Google Scholar 

  • Lin T-K, Kiremidjian A, Lei C-Y (2010) A bio-inspired structural health monitoring system based on ambient vibration. Smart Mater Struct 19:115012

    Article  Google Scholar 

  • Lin Y, Sodano HA (2009) Fabrication and electromechanical characterization of a piezoelectric structural fiber for multifunctional composites. Adv Funct Mater 19:592–598

    Article  Google Scholar 

  • Liu C (2007) Micromachined biomimetic artificial haircell sensors. Bioinspiration Biomimetics 2:S162–S169

    Article  Google Scholar 

  • Liu W, Gao W-C, Sun Y, Xu M-J (2008) Optimal sensor placement for spatial lattice structure based on genetic algorithms. J Sound Vib 317:175–189

    Article  Google Scholar 

  • Loh KJ, Azhari F (2012) Recent advances in skin-inspired sensors enabled by nanotechnology. J Mater 64:793–801

    Google Scholar 

  • Loh KJ, Hou T-C, Lynch JP, Kotov NA (2009) Carbon nanotube sensing skins for spatial strain and impact damage identification. J Nondestr Eval 28:9–25

    Article  Google Scholar 

  • Loh KJ, Kim JH, Lynch JP, Kam NWS, Kotov NA (2007) Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing. Smart Mater Struct 16:429–438

    Article  Google Scholar 

  • Loh KJ, Lynch JP, Shim BS, Kotov N (2008) Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. J Intell Mater Syst Struct 19:747–764

    Article  Google Scholar 

  • Loh KJ, Tom C, Benassini J, Bombardelli F (2014) A distributed piezo-polymer scour net for bridge scour hole topography monitoring. Smart Struct Sys 1:183-195

    Google Scholar 

  • Loh KJ (2008) Development of multifunctional carbon nanotube nanocomposite sensors for structural health monitoring. Ph.D., Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor

    Google Scholar 

  • Loh KJ, Lynch JP, Kotov NA (2005) Conformable single-walled carbon nanotube thin film strain sensors for structural monitoring. In: 5th International workshop on structural health monitoring, Stanford, CA, pp 686–694

    Google Scholar 

  • Loyola BR, Briggs TM, Arronche L, Loh KJ, Saponara VL, O’Bryan G, Skinner JL (2013a) Detection of spatially distributed damage in fiber-reinforced polymer composites. Struct Health Monit 12:225–240

    Article  Google Scholar 

  • Loyola BR, la Saponara V, Loh KJ (2010) In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. J Mater Sci 45:6786–6798

    Article  Google Scholar 

  • Loyola BR, la Saponara V, Loh KJ, Briggs TM, O’Bryan G, Skinner JL (2013b) Spatial sensing using electrical impedance tomography. IEEE Sens J 12:2357–2367

    Article  Google Scholar 

  • Lynch JP, Loh KJ (2006) A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vibr Digest 38:91–128

    Article  Google Scholar 

  • Mcgary PD, Tan L, Zou J, Stadler BJH, Downey PR, Flatau AB (2006) Magnetic nanowires for acoustic sensors. J Appl Phys 99:08B310/1-6

    Google Scholar 

  • Moore M, Phares B, Graybeal B, Rolander D, Washer G (2001) Reliability of visual inspection for highway bridges. Federal Highway Administration, Washington

    Google Scholar 

  • Mortensen LP, Ryu D, Zhao Y, Loh KJ (2013) Rapid assembly of multifunctional thin film sensors for wind turbine blade monitoring. Key Eng Mater 569–570:512–522

    Google Scholar 

  • Mukai T, Onishi M, Odashima T, Hirano S, Luo Z (2008) Development of the tactile sensor system of a human-interactive robot “RI-MAN”. IEEE Trans Rob 24:505–512

    Article  Google Scholar 

  • National Transportation Safety Board (NTSB) (2003) Natural gas pipeline rupture and fire near Carlsbad, New Mexico. In: Pipeline accident report, Washington DC

    Google Scholar 

  • Nofar M, Hoa SV, Pugh MD (2009) Development of novel single-wall carbon nanotube–epoxy composite ply actuators. Compos Sci Technol 69:1599–1606

    Article  Google Scholar 

  • Oh J-K, Jang G, Oh S, Lee JH, Yi B-J, Moon YS, Lee JS, Choi Y (2009) Bridge inspection robot system with machine vision. Autom Constr 18:929–941

    Article  Google Scholar 

  • Peckens CA, Lynch JP (2013) Utilizing the cochlea as a bio-inspired compressive sensing technique. Smart Mater Struct 22:105027

    Article  Google Scholar 

  • Peekema RM (2013) Causes of natural gas pipeline explosive ruptures. ASCE J Pipeline Syst Eng Pract 4:74–80

    Article  Google Scholar 

  • Pfatteicher SKA, Tongue MP (2002) What drives diversity? Engineering education and underrepresentation of minority groups. In: 32nd Annual frontiers in education, Boston, MA, pp S1C-1-6

    Google Scholar 

  • Philen MK, Shan Y, Prakash P, Wang KW, Rahn CD, Zydney AL, Bakis CE (2007) Fibrillar network adaptive structure with ion-transport actuation. J Intell Mater Syst Struct 18:323–334

    Article  Google Scholar 

  • Pinto, PA, Sarles SA, Leo DJ (2011) Bio-inspired flow sensors fabricated from carbon nanomaterials. In: ASME 2011 Conference on smart materials, adaptive structures and intelligent systems, Scottsdale, AZ, pp 725–732

    Google Scholar 

  • Pyo S, Loh KJ, Hou T-C, Jarva E, Lynch JP (2011) A wireless impedance analzyer for automated tomographic mapping of a nanoengineered sensing skin. Smart Struct Syst 8:137–153

    Article  Google Scholar 

  • Rytter A (1993) Vibration based inspection of civil engineering structures. Aalborg University, Aalborg Ph.D. Ph.D

    Google Scholar 

  • Salowitz N, Guo Z, Li Y-H, Kim K, Lanzara G, Chang F-K (2013) Bio-inspired stretchable network-based intelligent composites. J Compos Mater 47:97–105

    Article  Google Scholar 

  • Sarles SA, Madden JDW, Leo DJ (2011) Hair cell inspired mechanotransduction with a gel-supported, artificial lipid, membrane. Soft Matter 7:4644–4653

    Article  Google Scholar 

  • Schmidt RF (1986) Fundamentals of sensory physiology. Springer, New York

    Book  Google Scholar 

  • Spencer Jr BF, Ruiz-Sandoval ME, Kurata N (2004) Smart sensing technology: opportunities and challenges. J Struct Control Health Monit 11:349–368

    Google Scholar 

  • Sumitro S, Kurokawa S, Shimano K, Wang ML (2005) Monitoring based maintenance utilizing actual stress sensory technology. Smart Mater Struct 14:S68–S78

    Article  Google Scholar 

  • Swartz RA, Flatau AB, Brooks CN, Barkdoll BD, NA S-M, Endsley KA (2014) Bio-inspired magnetostrictive whisker sensors for autonomous bridge scour sensing. In: Transportation research board 93rd annual meeting, Washington, DC, pp 1–12

    Google Scholar 

  • Tadigadapa S, Mateti K (2009) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20:1–30

    Article  Google Scholar 

  • Tao J, Yu XB, Berrilla J (2011) Bio-inspired flow and acoustic sensor. In: Proceedings of the Sensors, and command, control, communications, SPIE and intelligence (C3I) technologies for homeland security and homeland defense X, Orlando, FL, pp 80190R/1-10

    Google Scholar 

  • Thostenson ET, Chou T-W (2002) Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D 35:L77–L80

    Article  Google Scholar 

  • Thostenson ET, Chou T-W (2006) Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing. Adv Mater 18:2837–2841

    Article  Google Scholar 

  • Thostenson ET, Chou T-W (2008) Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology 19:215713

    Article  Google Scholar 

  • Tomizuka M, Bergman LA, Shapiro B, Shoureshi R, Spencer BF, Taya M (2007) Bio-inspired autonomous engineered systems. Smart Struct Syst 3:495–505

    Article  Google Scholar 

  • Tsuda H, Takahashi J, Urabe K, Ikeguchi T (1999) Damage monitoring of carbon fiber-reinforced plastics with Michelson interferometric fiber-optic sensors. J Mater Sci 34:4163–4172

    Article  Google Scholar 

  • Twycross J, Aickelin U (2009) An Immune Inspired Approach to Anomaly Detection. arXiv preprint arXiv:0910.3117

    Google Scholar 

  • Unver O, Uneri A, Aydemir A, Sitti M (2006) Geckobot: a gecko inspired climbing robot using elastomer adhesives. In: Proceedings of the IEEE International conference on robotics and automation, Orlando, FL. pp 2329–2335

    Google Scholar 

  • Wang C-Y, Wang H-L, Ho C-C (2012) A piezoelectric film type scour monitoring system for bridge Pier. Adv Struct Eng 15:897–905

    Article  Google Scholar 

  • Whitehouse R (1998) Scour at Marine Structures. Thomas Telford, Heron Quay, London

    Google Scholar 

  • Wiegerink RJ, Floris A, Jaganatharaja RK, Izadi N, Lammerink TSJ, Krijnen GJM (2007) Biomimetic flow-sensor arrays based on the filiform hairs on the cerci of crickets. In: IEEE sensors conference, pp 1073–1076

    Google Scholar 

  • Worden K, Burrows AP (2001) Optimal sensor placement for fault detection. Eng Struct 23:885–901

    Article  Google Scholar 

  • Wu X, Wang D, Zhao A, Li D, Mei T (2013) A wall-climbing robot with biomimetic adhesive pedrail. In: Zhang D (ed) Advanced mechatronics and MEMS devices. Springer, New York

    Google Scholar 

  • Yao L, Sethares WA, Kammer DC (1993) Sensor placement for on-orbit modal identification via a genetic algorithm. AIAA J 31:1922–1928

    Article  Google Scholar 

  • Yi T-H, Li H-N, Zhang X-D (2012) Sensor placement on canton tower for health monitoring using asynchronous-climb monkey algorithm. Smart Mater Struct 21:125023

    Article  Google Scholar 

  • Yim JH, Kim YS, Koh KH, Lee S (2008) Fabrication of transparent single wall carbon nanotube films with low sheet resistance. J Vac Sci Technol B 26:851–855

    Article  Google Scholar 

  • Yousef H, Boukallei M, Althoefer K (2011) Tactile sensing for dexterous in-hand manipulation in robotics—a review. Sens Actuators A 167:171–187

    Article  Google Scholar 

  • Yu L, Santoni-Bottai G, Xu B, Liu W, Giurgiutiu V (2008) Piezoelectric wafer active sensors for in situ ultrasonic-guided wave SHM. Fatigue Fract Eng Mater Struct 31:611–628

    Article  Google Scholar 

  • Yu X, Tao J, Berilla J (2010) A Bio-inspired flow sensor. In: Proceedings of SPIE—nanosensors, biosensors, and info-tech sensors and systems

    Google Scholar 

  • Zhang G, Zhang Z, Ficher C (2007) Structural health monitoring of a long-span cable-stayed bridge. J Intell Mater Syst Struct 18:835–843

    Article  Google Scholar 

  • Zhao X, Qian T, Mei G, Kwan C, Zane R, Walsh C, Paing T, Popovic Z (2007) Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II. wireless approaches. Smart Mater Struct 16:1218–1225

    Article  Google Scholar 

  • Zhu D, Yi X, Wang Y, Lee K-M, Guo J (2010) A mobile sensing system for structural health monitoring: design and validation. Smart Mater Struct 19:055011/1-11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Loh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Loh, K.J., Ryu, D., Lee, B.M. (2015). Bio-inspired Sensors for Structural Health Monitoring. In: Pacheco Torgal, F., Labrincha, J., Diamanti, M., Yu, CP., Lee, H. (eds) Biotechnologies and Biomimetics for Civil Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-09287-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09287-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09286-7

  • Online ISBN: 978-3-319-09287-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics