Skip to main content
Log in

Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Impact damage, excessive loading, and corrosion have been identified as critical and long-term problems that constantly threaten the integrity and reliability of structural systems (e.g., civil infrastructures, aircrafts, and naval vessels). While a variety of sensing transducers have been proposed for structural health monitoring, most sensors only offer measurement of structural behavior at discrete structural locations. Here, a conformable carbon nanotube-polyelectrolyte sensing skin fabricated via the layer-by-layer technique is proposed to monitor strain and impact damage over spatial areas. Specifically, electrical impedance tomographical (EIT) conductivity mapping techniques are employed to offer two-dimensional damage maps from which damage location and severity can be easily and accurately quantified. This study deposits carbon nanotube-based sensing skins upon metallic structural plates with electrodes installed along the plate boundary. Based on boundary electrical measurements, EIT mapping captures both strain in the underlying substrate as well as damage (e.g., permanent deformation and cracking) introduced using an impact apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samsonov, P.: Nondestructive inspection of aging aircraft. Proc. SPIE 2001, 257–261 (1993)

    Article  Google Scholar 

  2. Oberg, J.: The shuttle puzzle [Space Shuttle Columbia disaster]. IEEE Spectrum 40(3), 22–24 (2003)

    Article  Google Scholar 

  3. Njord, J.R., Meyer, M.D.: Critical issues in transportation. Transp. Res. Board Natl. Acad. 1–13 (2006)

  4. Doebling, S.W., Farrar, C.R., Prime, M.B.: Summary review of vibration-based damage identification methods. Shock Vib. Dig. 30(2), 91–105 (1998)

    Article  Google Scholar 

  5. Raghavan, A., Cesnik, C.E.S.: Review of guided-wave structural health monitoring. Shock Vib. Dig. 39(2), 91–114 (2007)

    Article  Google Scholar 

  6. Giurgiutiu, V., Cuc, A.: Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention. Shock Vib. Dig. 37(2), 83–105 (2005)

    Article  Google Scholar 

  7. Giurgiutiu, V., Zagrai, A., Bao, J.: Damage identification in aging aircraft structures with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 15(9-10), 673–687 (2004)

    Article  Google Scholar 

  8. Park, S., Yun, C.-B., Roh, Y., Lee, J.-J.: PZT-based active damage detection techniques for steel bridge components. Smart Mater. Struct. 15(4), 957–966 (2006)

    Article  Google Scholar 

  9. Sohn, H., Park, G., Wait, J.R., Limback, N.P., Farrar, C.R.: Wavelet-based active sensing for delamination detection in composite structures. Smart Mater. Struct. 13(1), 153–160 (2004)

    Article  Google Scholar 

  10. Gogotsi, Y.: (ed.): Nanomaterials Handbook. Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  11. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  12. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Google Scholar 

  13. Blighe, F.M., Lyons, P.E., De, S., Blau, W.J., Coleman, J.N.: On the factors controlling the mechanical properties of nanotube films. Carbon 46(1), 41–47 (2008)

    Article  Google Scholar 

  14. Malik, S., Rosner, H., Hennrich, F., Bottcher, A., Kappes, M.M., Beck, T., Auhorn, M.: Failure mechanism of free standing single-walled carbon nanotube thin films under tensile load. Phys. Chem. Chem. Phys. 6(13), 3540–3544 (2004)

    Article  Google Scholar 

  15. Mamedov, A.A., Kotov, N.A., Prato, M., Guldi, D.M., Wicksted, J.P., Hirsch, A.: Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat. Mater. 1(3), 190–194 (2002)

    Article  Google Scholar 

  16. Loh, K.J., Kim, J., Lynch, J.P., Kam, N.W.S., Kotov, N.A.: Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing. Smart Mater. Struct. 16(2), 429–438 (2007)

    Article  Google Scholar 

  17. Loh, K.J., Lynch, J.P., Shim, B.S., Kotov, N.A.: Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. J. Intell. Mater. Syst. Struct. 19(7), 747–764 (2008)

    Article  Google Scholar 

  18. Brown, B.H.: Electrical impedance tomography (EIT): a review. J. Med. Eng. Technol. 27(3), 97–108 (2003)

    Article  Google Scholar 

  19. Holder, D.S. (ed.): Electrical Impedance Tomography: Methods, History and Applications. The Institute of Physics, London (2005)

    Google Scholar 

  20. Hou, T.-C., Loh, K.J., Lynch, J.P.: Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications. Nanotechnology 18(31), 315501/315501–315501/315509 (2007)

    Article  Google Scholar 

  21. Vauhkonen, M.: Electrical impedance tomography and prior information. Ph.D. Thesis, Kuopio University, Natural and Environmental Sciences, Kuopio, Finland (1997)

  22. Wolfson, R., Pasachoff, J.M.: Physics with Modern Physics for Scientists and Engineers, 2nd edn. HarperCollins College, New York (1995)

    Google Scholar 

  23. Borcea, L.: Electrical impedance tomography. Inverse Probl. 18(6), R99–R136 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concept and Applications of Finite Element Analysis, 4th edn. Wiley, New York (2002)

    Google Scholar 

  25. Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52(4), 1023–1040 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Decher, G., Schlenoff, J.B. (eds.): Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  27. Loh, K.J.: Development of multifunctional carbon nanotube nanocomposite sensors for structural health monitoring. Ph.D. Thesis, University of Michigan, Department of Civil and Environmental Engineering, Ann Arbor, MI (2008)

  28. Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(29), 1232–1237 (1997)

    Article  Google Scholar 

  29. Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3(10), 1379–1382 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome P. Lynch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loh, K.J., Hou, TC., Lynch, J.P. et al. Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification. J Nondestruct Eval 28, 9–25 (2009). https://doi.org/10.1007/s10921-009-0043-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-009-0043-y

Keywords

Navigation