Skip to main content

Trichoderma: A Multi-Purpose Tool for Integrated Pest Management

  • Chapter
  • First Online:
Principles of Plant-Microbe Interactions

Abstract

Trichoderma spp. are mainly known as biocontrol and beneficial microbes useful for a range of applications, from seed coating to post-harvest, from soil to foliar, and able to provide a variety of benefits by using a plethora of mechanisms. No other beneficial fungus in the agriculture field has received so much combined attention from science and the commercial market. However, as indicated from the many hundreds of related publications normally produced each year, we are far from fully understanding the potential of these incredibly successful, from an ecological point of view, bionts. This chapter briefly summarizes the main knowledge of the interactions established by agriculturally useful Trichodermas, and discusses the next future scenario of the use of these natural, multi-purpose tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atanasova L, Le Crom S, Gruber S et al (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 14:121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Battaglia D, Bossi S, Cascone P et al (2013) Tomato below ground–above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Mol Plant Microbe Interact 26:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Bernard E, Larkin RP, Tavantzis S et al (2012) Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl Soil Ecol 52:29–41

    Article  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A et al (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activationof the antioxidant machinery for saline stress tolerance. PLoS Pathog 9(3)

    Google Scholar 

  • Chaverri P, Samuels GJ (2013) Evolution of host affiliation and substrate preference in the cosmopolitan fungal genus Trichoderma with evidence of interkingdom host jumps. Evolution 67:2823–2837

    PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C et al (2009) Trichoderma virens, a plant beneficial fungus, enhances root biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cumagun CJR (2012) Managing plant diseases and promoting sustainability and productivity with Trichoderma: the Philippine experience. J Agric Sci Technol 14:699–714

    Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A et al (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  • Ha TN (2010) Using Trichoderma species for biological control of plant pathogens in Viet Nam. J Issaas 16:17–21

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Obregón MA, Samuels GJ et al (2010) Changing models for commercialization and implementation of biocontrol in the developing and developed world. Plant Dis 94:928–938

    Article  Google Scholar 

  • Hermosa R, Belen Rubio M, Cardoza RE et al (2013) The contribution of Trichoderma to balancing the costs of plant growth and defense. Int Microbiol 16:69–80

    CAS  PubMed  Google Scholar 

  • Keswani C, Mishra S, Sarma B et al (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544

    Article  CAS  PubMed  Google Scholar 

  • Lorito M, Woo SL, Garcia FI et al (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. PNAS 95:7860–7865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorito M, Woo SL, Harman GE et al (2010) Translational research on Trichoderma: from ’omics to the field. Annu Rev Phytopathol 48:395–417

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Medina A, Fernandez I, Sánchez-Guzmán MJ et al (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206

    Article  PubMed Central  PubMed  Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2012) Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water defecit. Mol Plant Microbe Interact 9:1264–1271

    Article  Google Scholar 

  • Mukherjee PK, Horwitz BA, Herrera-Estrella A et al (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma—a genomic perspective. Microbiology 158:35–45

    Article  CAS  PubMed  Google Scholar 

  • Perazzolli M, Roatti B, Bozza E et al (2011) Trichoderma harzianum T39 induces resistanceagainst downy mildew by priming for defence without costs for grapevine. Biol Control 58:74–82

    Article  Google Scholar 

  • Ramão-Dumaresque AS, de Araújo AS, Talbot NJ et al (2012) RNA interference of endochitinases in sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One 7(10):e47888

    Article  Google Scholar 

  • Roldán A, Albacete P, Jose A (2011) The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry 72:223–229

    Article  PubMed  Google Scholar 

  • Schirmböck M, Lorito M, Wang Y et al (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics: molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    PubMed Central  PubMed  Google Scholar 

  • Seidl V, Marchetti M, Schandl R et al (2006) Epl1, the major secreted proteinof Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defence response elicitors. FEBS J 273:4346–4359

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE (2008) The relationship between increased growth and resistance induced in plants by root colonizing microbes. Plant Signaling Behav 3:737–739

    Article  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Spiegel Y, Sharon E, Bar-Eyal M et al (2007) Evaluation and mode of action of Trichoderma isolates as biocontrol agents against plant-parasitic nematodes. Bulletin OILB/SROP 30:25

    Google Scholar 

  • Studholme D, Harris J, Le Cocq B et al (2013) Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture—insights from genomics. Front Plant Sci 4:258

    Article  PubMed Central  PubMed  Google Scholar 

  • Tripathi P, Singh P, Mishra A et al (2013) Trichoderma: a potential bioremediator for environmental clean up. Clean Techn Environ Policy 4:1–10

    Google Scholar 

  • Tucci M, Ruocco M, De Masi L et al (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL et al (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL et al (2012) Trichoderma secondary metabolites that affect plant metabolism. Natural Product Commun 7:1545–1550

    CAS  Google Scholar 

  • Vos C, De Cremer K, Cammue B et al (2014) The toolbox of Trichoderma spp. in biocontrol of Botrytis cinerea disease. Mol Plant Pathol (in press)

    Google Scholar 

  • Woo SL, Donzelli B, Scala F et al (1999) Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Mol Plant Microbe Interact 12:419–429

    Article  CAS  Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y et al (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Lorito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lorito, M., Woo, S. (2015). Trichoderma: A Multi-Purpose Tool for Integrated Pest Management. In: Lugtenberg, B. (eds) Principles of Plant-Microbe Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-08575-3_36

Download citation

Publish with us

Policies and ethics