Skip to main content

Patella, Femoropatellar Joint, and Infrapatellar Fat Pad

  • Chapter
  • First Online:
MRI of the Knee

Abstract

The patella is the largest sesamoid bone in the body and is part of the extensor mechanism of the knee together with the quadriceps muscle and tendon, patellar tendon, and patellar retinaculum [1]. The bone has two surfaces, three borders, a base, and an apex. The vastus intermedius and the rectus femoris tendons attach to the base (syn. proximal pole) of the patella and the vastus medialis and vastus lateralis to the medial and, respectively, lateral border. The quadriceps muscle is the active stabilizer of the patella. The apex (syn. distal pole) of the patella is extra-articular and is the site of the attachment of the patellar tendon. The patellar tendon, the major passive stabilizer of the patella, inserts distally to the tibial tuberosity and has a length of approximately 4–6 cm. The thickness of the tendon is 5–6 mm and the width is 3 cm at the patellar insertion and 2.5 cm at the tibial insertion [2]. Normal tendons have uniformly low signal intensity on all MRI sequences and display distinct margins [3]. The quadriceps muscle and tendon, patellar tendon, patella, and patellar retinaculum represent the extensor mechanism of the knee [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sonin AH, et al. MR imaging appearance of the extensor mechanism of the knee: functional anatomy and injury patterns. Radiographics. 1995;15(2):367–82.

    Article  CAS  PubMed  Google Scholar 

  2. Reider B, et al. The anterior aspect of the knee joint. J Bone Joint Surg Am. 1981;63(3):351–6.

    CAS  PubMed  Google Scholar 

  3. el-Khoury GY, et al. MR imaging of patellar tendinitis. Radiology. 1992;184(3):849–54.

    Article  CAS  PubMed  Google Scholar 

  4. Grelsamer RP, Proctor CS, Bazos AN. Evaluation of patellar shape in the sagittal plane. A clinical analysis. Am J Sports Med. 1994;22(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  5. Tecklenburg K, et al. Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc. 2006;14(3):235–40.

    Article  CAS  PubMed  Google Scholar 

  6. Ruiz ME, Erickson SJ. Medial and lateral supporting structures of the knee. Normal MR imaging anatomy and pathologic findings. Magn Reson Imaging Clin N Am. 1994;2(3):381–99.

    CAS  PubMed  Google Scholar 

  7. Amis AA, et al. Anatomy and biomechanics of the medial patellofemoral ligament. Knee. 2003;10(3):215–20.

    Article  CAS  PubMed  Google Scholar 

  8. Bicos J, Fulkerson JP, Amis A. Current concepts review: the medial patellofemoral ligament. Am J Sports Med. 2007;35(3):484–92.

    Article  PubMed  Google Scholar 

  9. Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics. 2010;30(4):961–81.

    Article  PubMed  Google Scholar 

  10. Merican AM, Amis AA. Anatomy of the lateral retinaculum of the knee. J Bone Joint Surg Br. 2008;90(4):527–34.

    Article  CAS  PubMed  Google Scholar 

  11. Fulkerson JP, Gossling HR. Anatomy of the knee joint lateral retinaculum. Clin Orthop Relat Res. 1980;153:183–8.

    PubMed  Google Scholar 

  12. Terry GC, Hughston JC, Norwood LA. The anatomy of the iliopatellar band and iliotibial tract. Am J Sports Med. 1986;14(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  13. Wiberg G. Roentgenographic and anatomic studies on the femoro-patellar joint. Acta Orthop Scand. 1941;15(1):39–46.

    Google Scholar 

  14. Dejour D, Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc. 2007;15(1):39–46.

    Article  PubMed  Google Scholar 

  15. Staeubli HU, et al. Magnetic resonance imaging for articular cartilage: cartilage-bone mismatch. Clin Sports Med. 2002;21(3):417–33, viii–ix.

    Article  PubMed  Google Scholar 

  16. Seil R, et al. Reliability and interobserver variability in radiological patellar height ratios. Knee Surg Sports Traumatol Arthrosc. 2000;8(4):231–6.

    Article  CAS  PubMed  Google Scholar 

  17. Biedert RM, Albrecht S. The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc. 2006;14(8):707–12.

    Article  PubMed  Google Scholar 

  18. Collins MS, Tiegs-Heiden CA, Stuart MJ. Patellar calcar: MRI appearance of a previously undescribed anatomical entity. Skeletal Radiol. 2014;43(2):219–25.

    Article  PubMed  Google Scholar 

  19. Pfirrmann CW, et al. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216(3):858–64.

    Article  CAS  PubMed  Google Scholar 

  20. Bongers EM, et al. Human syndromes with congenital patellar anomalies and the underlying gene defects. Clin Genet. 2005;68(4):302–19.

    Article  CAS  PubMed  Google Scholar 

  21. Sheffield EG. Double-layered patella in multiple epiphyseal dysplasia: a valuable clue in the diagnosis. J Pediatr Orthop. 1998;18(1):123–8.

    CAS  PubMed  Google Scholar 

  22. Rosenthal RK, Levine DB. Fragmentation of the distal pole of the patella in spastic cerebral palsy. J Bone Joint Surg Am. 1977;59(7):934–9.

    CAS  PubMed  Google Scholar 

  23. Saupe E. Primare knochenmarkseiterung der kniescheibe. Deutsche Z Chir. 1943;258:386–92.

    Article  Google Scholar 

  24. Kavanagh EC, et al. MRI findings in bipartite patella. Skeletal Radiol. 2007;36(3):209–14.

    Article  PubMed  Google Scholar 

  25. Neyret P, et al. Patellar tendon length–the factor in patellar instability? Knee. 2002;9(1):3–6.

    Article  PubMed  Google Scholar 

  26. Shabshin N, et al. MRI criteria for patella alta and baja. Skeletal Radiol. 2004;33(8):445–50.

    Article  PubMed  Google Scholar 

  27. Dejour D, et al. The introduction of a new MRI index to evaluate sagittal patellofemoral engagement. Orthop Traumatol Surg Res. 2013;99(8 Suppl):S391–8.

    Article  CAS  PubMed  Google Scholar 

  28. Ali SA, Helmer R, Terk MR. Patella alta: lack of correlation between patellotrochlear cartilage congruence and commonly used patellar height ratios. AJR Am J Roentgenol. 2009;193(5):1361–6.

    Article  PubMed  Google Scholar 

  29. Insall J, Salvati E. Patella position in the normal knee joint. Radiology. 1971;101(1):101–4.

    Article  CAS  PubMed  Google Scholar 

  30. Miller TT, Staron RB, Feldman F. Patellar height on sagittal MR imaging of the knee. AJR Am J Roentgenol. 1996;167(2):339–41.

    Article  CAS  PubMed  Google Scholar 

  31. Endo Y, et al. MRI quantitative morphologic analysis of patellofemoral region: lack of correlation with chondromalacia patellae at surgery. AJR Am J Roentgenol. 2007;189(5):1165–8.

    Article  PubMed  Google Scholar 

  32. Weber-Spickschen TS, et al. The relationship between trochlear dysplasia and medial patellofemoral ligament rupture location after patellar dislocation: an MRI evaluation. Knee. 2011;18(3):185–8.

    Article  CAS  PubMed  Google Scholar 

  33. Farahmand F, Senavongse W, Amis AA. Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint. J Orthop Res. 1998;16(1):136–43.

    Article  CAS  PubMed  Google Scholar 

  34. Ahmed AM, Duncan NA. Correlation of patellar tracking pattern with trochlear and retropatellar surface topographies. J Biomech Eng. 2000;122(6):652–60.

    Article  CAS  PubMed  Google Scholar 

  35. Amis AA, Senavongse W, Darcy P. Biomechanics of patellofemoral joint prostheses. Clin Orthop Relat Res. 2005;436:20–9.

    Article  PubMed  Google Scholar 

  36. Earhart C, et al. Transient lateral patellar dislocation: review of imaging findings, patellofemoral anatomy, and treatment options. Emerg Radiol. 2013;20(1):11–23.

    Article  PubMed  Google Scholar 

  37. Carrillon Y, et al. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology. 2000;216(2):582–5.

    Article  CAS  PubMed  Google Scholar 

  38. Elias DA, White LM. Imaging of patellofemoral disorders. Clin Radiol. 2004;59(7):543–57.

    Article  CAS  PubMed  Google Scholar 

  39. Kirsch MD, et al. Transient lateral patellar dislocation: diagnosis with MR imaging. AJR Am J Roentgenol. 1993;161(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  40. Zaidi A, et al. MRI of traumatic patellar dislocation in children. Pediatr Radiol. 2006;36(11):1163–70.

    Article  PubMed  Google Scholar 

  41. Dejour H, et al. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  42. Balcarek P, et al. MRI but not arthroscopy accurately diagnoses femoral MPFL injury in first-time patellar dislocations. Knee Surg Sports Traumatol Arthrosc. 2012;20(8):1575–80.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Spritzer CE, et al. Medial retinacular complex injury in acute patellar dislocation: MR findings and surgical implications. AJR Am J Roentgenol. 1997;168(1):117–22.

    Article  CAS  PubMed  Google Scholar 

  44. Vellet AD, et al. Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology. 1991;178(1):271–6.

    Article  CAS  PubMed  Google Scholar 

  45. Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology. 2002;225(3):736–43.

    Article  PubMed  Google Scholar 

  46. Roels J, et al. Patellar tendinitis (jumper’s knee). Am J Sports Med. 1978;6(6):362–8.

    Article  CAS  PubMed  Google Scholar 

  47. Martens M, et al. Patellar tendinitis: pathology and results of treatment. Acta Orthop Scand. 1982;53(3):445–50.

    Article  CAS  PubMed  Google Scholar 

  48. Blazina ME, et al. Jumper’s knee. Orthop Clin North Am. 1973;4(3):665–78.

    CAS  PubMed  Google Scholar 

  49. Gottsegen CJ, et al. Avulsion fractures of the knee: imaging findings and clinical significance. Radiographics. 2008;28(6):1755–70.

    Article  PubMed  Google Scholar 

  50. Bates DG, Hresko MT, Jaramillo D. Patellar sleeve fracture: demonstration with MR imaging. Radiology. 1994;193(3):825–7.

    Article  CAS  PubMed  Google Scholar 

  51. Jacobson JA, et al. MR imaging of the infrapatellar fat pad of Hoffa. Radiographics. 1997;17(3):675–91.

    Article  CAS  PubMed  Google Scholar 

  52. Cavanagh RC, Schwamm HA. RPC of the month from the AFIP. Radiology. 1971;100(2):409–14.

    Article  CAS  PubMed  Google Scholar 

  53. Jelinek JS, et al. Imaging of pigmented villonodular synovitis with emphasis on MR imaging. AJR Am J Roentgenol. 1989;152(2):337–42.

    Article  CAS  PubMed  Google Scholar 

  54. Robertson PL, et al. Anterior cruciate ligament tears: evaluation of multiple signs with MR imaging. Radiology. 1994;193(3):829–34.

    Article  CAS  PubMed  Google Scholar 

  55. Fithian DC, Paxton EW, Cohen AB. Indications in the treatment of patellar instability. J Knee Surg. 2004;17(1):47–56.

    PubMed  Google Scholar 

  56. Stefancin JJ, Parker RD. First-time traumatic patellar dislocation: a systematic review. Clin Orthop Relat Res. 2007;455:93–101.

    Article  PubMed  Google Scholar 

  57. McCarthy M, et al. Femoral tunnel placement in medial patellofemoral ligament reconstruction. Iowa Orthop J. 2013;33:58–63.

    PubMed Central  PubMed  Google Scholar 

  58. Elias JJ, Cosgarea AJ. Technical errors during medial patellofemoral ligament reconstruction could overload medial patellofemoral cartilage: a computational analysis. Am J Sports Med. 2006;34(9):1478–85.

    Article  PubMed  Google Scholar 

  59. Bollier M, et al. Technical failure of medial patellofemoral ligament reconstruction. Arthroscopy. 2011;27(8):1153–9.

    Article  PubMed  Google Scholar 

  60. Haspl M, et al. Fully arthroscopic stabilization of the patella. Arthroscopy. 2002;18(1):E2.

    Article  PubMed  Google Scholar 

  61. Arendt EA, Fithian DC, Cohen E. Current concepts of lateral patella dislocation. Clin Sports Med. 2002;21(3):499–519.

    Article  PubMed  Google Scholar 

  62. Fucentese SF, et al. Classification of trochlear dysplasia as predictor of clinical outcome after trochleoplasty. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1655–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolog, N.V., Andreisek, G., Ulbrich, E.J. (2015). Patella, Femoropatellar Joint, and Infrapatellar Fat Pad. In: MRI of the Knee. Springer, Cham. https://doi.org/10.1007/978-3-319-08165-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08165-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08164-9

  • Online ISBN: 978-3-319-08165-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics