Skip to main content

Bones

  • Chapter
  • First Online:
MRI of the Knee

Abstract

The performance of MR imaging regarding the evaluation of bone structures varies from the poorly detailed information regarding the cortical bone to its unique capability of bone marrow assessment. Although some MR sequences (also called “black-bone” MRI) based on a partial flip angle technique or new ultrashort echo (UTE) techniques have been used for providing images of the cortical bone, computer tomography remains the imaging method of choice for cortical bone evaluation in the clinical routine (Fig. 11.1) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eley KA, et al. “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol. 2012;85(1011):272–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hanna SL, et al. Magnetic resonance imaging of disseminated bone marrow disease in patients treated for malignancy. Skeletal Radiol. 1991;20(2):79–84.

    Article  CAS  PubMed  Google Scholar 

  3. Vanel D. MRI of bone metastases: the choice of the sequence. Cancer Imaging. 2004;4(1):30–5.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Shah LM, Hanrahan CJ. MRI of spinal bone marrow: part I, techniques and normal age-related appearances. AJR Am J Roentgenol. 2011;197(6):1298–308.

    Article  PubMed  Google Scholar 

  5. Tehranzadeh J. The spectrum of avulsion and avulsion-like injuries of the musculoskeletal system. Radiographics. 1987;7(5):945–74.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor J, Hughes TH, Resnick D. Chapter 1. In: Taylor J, Hughes TH, Resnick D, editors. Skeletal imaging: atlas of the spine and extremities. Maryland Heights: Saunders; 2010. ISBN-10: 1-4160-5623-8.

    Google Scholar 

  7. Hayes CW, Conway WF, Daniel WW. MR imaging of bone marrow edema pattern: transient osteoporosis, transient bone marrow edema syndrome, or osteonecrosis. Radiographics. 1993;13(5):1001–11; discussion 1012.

    Article  CAS  PubMed  Google Scholar 

  8. Joyce JM, Keats TE. Disuse osteoporosis: mimic of neoplastic disease. Skeletal Radiol. 1986;15(2):129–32.

    Article  CAS  PubMed  Google Scholar 

  9. Poole KE, Warburton EA, Reeve J. Rapid long-term bone loss following stroke in a man with osteoporosis and atherosclerosis. Osteoporos Int. 2005;16(3):302–5.

    Article  PubMed  Google Scholar 

  10. Lang TF, et al. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res. 2006;21(8):1224–30.

    Article  PubMed  Google Scholar 

  11. Nardo L, et al. Bone marrow changes related to disuse. Eur Radiol. 2013;23(12):3422–31.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Loomer PM. The impact of microgravity on bone metabolism in vitro and in vivo. Crit Rev Oral Biol Med. 2001;12(3):252–61.

    Article  CAS  PubMed  Google Scholar 

  13. Park EA. The imprinting of nutritional disturbances on the growing bone. Pediatrics. 1964;33(SUPPL):815–62.

    PubMed  Google Scholar 

  14. Ogden JA. Growth slowdown and arrest lines. J Pediatr Orthop. 1984;4(4):409–15.

    Article  CAS  PubMed  Google Scholar 

  15. Yao L, Seeger LL. Epiphyseal growth arrest lines. MR findings. Clin Imaging. 1997;21(4):237–40.

    Article  CAS  PubMed  Google Scholar 

  16. Saini A, Saifuddin A. MRI of osteonecrosis. Clin Radiol. 2004;59(12):1079–93.

    Article  CAS  PubMed  Google Scholar 

  17. Mont MA, et al. Atraumatic osteonecrosis of the knee. J Bone Joint Surg Am. 2000;82(9):1279–90.

    CAS  PubMed  Google Scholar 

  18. Breer S, et al. Spontaneous osteonecrosis of the knee (SONK). Knee Surg Sports Traumatol Arthrosc. 2013;21(2):340–5.

    Article  CAS  PubMed  Google Scholar 

  19. Rowe CW, Haggard ME. Bone infarcts in sickle-cell anemia. Radiology. 1957;68(5):661–8.

    Article  CAS  PubMed  Google Scholar 

  20. Jensen KE, et al. Magnetic resonance imaging of the bone marrow following treatment with recombinant human erythropoietin in patients with end-stage renal disease. Int J Artif Organs. 1990;13(8):477–81.

    CAS  PubMed  Google Scholar 

  21. Umans H, Haramati N, Flusser G. The diagnostic role of gadolinium enhanced MRI in distinguishing between acute medullary bone infarct and osteomyelitis. Magn Reson Imaging. 2000;18(3):255–62.

    Article  CAS  PubMed  Google Scholar 

  22. Norman A, Steiner GC. Radiographic and morphological features of cyst formation in idiopathic bone infarction. Radiology. 1983;146(2):335–8.

    Article  CAS  PubMed  Google Scholar 

  23. Adalberth T, et al. Magnetic resonance imaging, scintigraphy, and arthroscopic evaluation of traumatic hemarthrosis of the knee. Am J Sports Med. 1997;25(2):231–7.

    Article  CAS  PubMed  Google Scholar 

  24. Terzidis IP, et al. The appearance of kissing contusion in the acutely injured knee in the athletes. Br J Sports Med. 2004;38(5):592–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zeiss J, et al. Comparison of bone contusion seen by MRI in partial and complete tears of the anterior cruciate ligament. J Comput Assist Tomogr. 1995;19(5):773–6.

    Article  CAS  PubMed  Google Scholar 

  26. Sanders TG, et al. Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics. 2000;20(Spec No):S135–51.

    Article  PubMed  Google Scholar 

  27. Brown JH, DeLuca SA. Growth plate injuries: Salter-Harris classification. Am Fam Physician. 1992;46(4):1180–4.

    CAS  PubMed  Google Scholar 

  28. Gottsegen CJ, et al. Avulsion fractures of the knee: imaging findings and clinical significance. Radiographics. 2008;28(6):1755–70.

    Article  PubMed  Google Scholar 

  29. Capps GW, Hayes CW. Easily missed injuries around the knee. Radiographics. 1994;14(6):1191–210.

    Article  CAS  PubMed  Google Scholar 

  30. Hall FM, Hochman MG. Medial Segond-type fracture: cortical avulsion off the medial tibial plateau associated with tears of the posterior cruciate ligament and medial meniscus. Skeletal Radiol. 1997;26(9):553–5.

    Article  CAS  PubMed  Google Scholar 

  31. Stevens MA, et al. Imaging features of avulsion injuries. Radiographics. 1999;19(3):655–72.

    Article  CAS  PubMed  Google Scholar 

  32. Hayes CW, et al. Mechanism-based pattern approach to classification of complex injuries of the knee depicted at MR imaging. Radiographics. 2000;20(Spec No):S121–34.

    Article  PubMed  Google Scholar 

  33. Bolog N, Hodler J. MR imaging of the posterolateral corner of the knee. Skeletal Radiol. 2007;36(8):715–28.

    Article  PubMed  Google Scholar 

  34. Niva MH, et al. Bone stress injuries are common in female military trainees: a preliminary study. Clin Orthop Relat Res. 2009;467(11):2962–9.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Niva MH, et al. Bone stress injuries causing exercise-induced knee pain. Am J Sports Med. 2006;34(1):78–83.

    Article  PubMed  Google Scholar 

  36. Rosenthal MD, Moore JH, DeBerardino TM. Diagnosis of medial knee pain: atypical stress fracture about the knee joint. J Orthop Sports Phys Ther. 2006;36(7):526–34.

    Article  PubMed  Google Scholar 

  37. Herget GW, et al. Insights into Enchondroma, Enchondromatosis and the risk of secondary Chondrosarcoma. Review of the literature with an emphasis on the clinical behaviour, radiology, malignant transformation and the follow up. Neoplasma. 2014;61(4):365–78. doi: 10.4149/neo_2014_046.

    Google Scholar 

  38. Murphey MD, et al. Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiographics. 1998;18(5):1213–37; quiz 1244–5.

    Article  CAS  PubMed  Google Scholar 

  39. De Coninck T, et al. Dynamic contrast-enhanced MR imaging for differentiation between enchondroma and chondrosarcoma. Eur Radiol. 2013;23(11):3140–52.

    Article  PubMed  Google Scholar 

  40. Vanel D, et al. The incidental skeletal lesion: ignore or explore? Cancer Imaging. 2009;9(Spec No A):S38–43.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Masciocchi C, Sparvoli L, Barile A. Diagnostic imaging of malignant cartilage tumors. Eur J Radiol. 1998;27 Suppl 1:S86–90.

    Article  PubMed  Google Scholar 

  42. Nomikos GC, et al. Primary bone tumors of the lower extremities. Radiol Clin North Am. 2002;40(5):971–90.

    Article  PubMed  Google Scholar 

  43. Kindblom L. Bone tumors: epidemiology, classification, pathology. In: Davies AS, James M, editors. Bone tumors and tumor-like lesions. Berlin/Heidelberg/Leipzig: Springer; 2010. p. 1–17.

    Google Scholar 

  44. Taylor J, Hughes TH, Resnick D. Chapter 9. In: Taylor J, Hughes TH, Resnick D, editors. Skeletal imaging: atlas of the spine and extremities. Maryland Heights: Saunders; 2010. ISBN-10: 1-4160-5623-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolog, N.V., Andreisek, G., Ulbrich, E.J. (2015). Bones. In: MRI of the Knee. Springer, Cham. https://doi.org/10.1007/978-3-319-08165-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08165-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08164-9

  • Online ISBN: 978-3-319-08165-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics