Skip to main content

Abstract

In this study, the aim was to estimate the performance of a brain-computer interface (BCI) system by detecting movement intentions using only a single monopolar channel of electroencephalography (EEG). Seven healthy subjects performed four types of cued palmar grasps with two levels of force and speed. The movement intentions were detected using a technique where a template of the initial negative phase of the movement-related cortical potential (movement intention) was matched with the continuous EEG. On average 78 % of the movements were detected (true positive rate) ~150 milliseconds before the task onset. The number of false positive detections was 1.5 per minute. The estimated system performance, using only a single monopolar channel, indicates that the proposed setup can be used for neuromodulation paradigms in BCI where the movement intention is paired with somatosensory feedback from e.g. functional electrical stimulation or robot-assisted movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grosse-Wentrup, M., Mattia, D., Oweiss, K.: Using brain-computer interfaces to induce neural plasticity and restore function. Journal of Neural Engineering 8, 025004 (2011)

    Google Scholar 

  2. Daly, J.J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., Dohring, M.: Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. Journal of Neurologic Physical Therapy 33, 203–211 (2009)

    Article  Google Scholar 

  3. Mrachacz-Kersting, N., Kristensen, S.R., Niazi, I.K., Farina, D.: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J. Physiol (Lond.) 590, 1669–1682 (2012)

    Google Scholar 

  4. Pascual-Leone, A., Dang, N., Cohen, L.G., Brasil-Neto, J.P., Cammarota, A., Hallett, M.: Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 74, 1037–1037 (1995)

    Google Scholar 

  5. Stefan, K., Kunesch, E., Cohen, L.G., Benecke, R., Classen, J.: Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123, 572–584 (2000)

    Article  Google Scholar 

  6. Mrachacz-Kersting, N., Fong, M., Murphy, B.A., Sinkjær, T.: Changes in excitability of the cortical projections to the human tibialis anterior after paired associative stimulation. J. Neurophysiol. 97, 1951–1958 (2007)

    Article  Google Scholar 

  7. Niazi, I.K., Kersting, N.M., Jiang, N., Dremstrup, K., Farina, D.: Peripheral electrical stimulation triggered by self-pace detection of motor intention enhances corticospinal excitability. IEEE Transaction on Neural Systems and Rehabilitation Engineering 20, 595–604 (2012)

    Article  Google Scholar 

  8. Xu, R., Jiang, N., Asín, G., Moreno, J.C., Pons, J.L., Mrachacz-Kersting, N., Farina, D.: An Ambulatory BCI-Driven Orthosis for Stroke Rehabilitation. In: Proceedings of the Fifth International Brain-Computer Interface Meeting 2013 (2013)

    Google Scholar 

  9. Kornhuber, H.H., Deecke, L.: Hirnpotentialänderrungen beim Menschen vor und nach Willkürbewegungen, dargestellt mit Magnetbandspeicherung und Rüchwärtsanalyse. Pflügers Arch. Ges. Physiol. 281 (1964)

    Google Scholar 

  10. Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.C., Winter, A.L.: Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature (Lond.) 203, 380–384 (1964)

    Article  Google Scholar 

  11. Shibasaki, H., Hallett, M.: What is the Bereitschaftspotential? Clinical Neurophysiology 117, 2341–2356 (2006)

    Article  Google Scholar 

  12. Nascimento, O.F., Nielsen, K.D., Voigt, M.: Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions. Experimental Brain Research 171, 78–90 (2006)

    Article  Google Scholar 

  13. Lu, M., Arai, N., Tsai, C., Ziemann, U.: Movement related cortical potentials of cued versus self-initiated movements: Double dissociated modulation by dorsal premotor cortex versus supplementary motor area rTMS. Hum. Brain Mapp. 33, 824–839 (2012)

    Article  Google Scholar 

  14. Jankelowitz, S., Colebatch, J.: Movement-related potentials associated with self-paced, cued and imagined arm movements. Experimental Brain Research 147, 98–107 (2002)

    Article  Google Scholar 

  15. Niazi, I.K., Jiang, N., Tiberghien, O., Nielsen, J.F., Dremstrup, K., Farina, D.: Detection of movement intention from single-trial movement-related cortical potentials. Journal of Neural Engineering 8, 066009 (2011)

    Google Scholar 

  16. Lew, E., Chavarriaga, R., Silvoni, S., Millán, J.R.: Detection of self-paced reaching movement intention from EEG signals. Frontiers in Neuroengineering 5, 13 (2012)

    Article  Google Scholar 

  17. Jochumsen, M., Niazi, I.K., Mrachacz-Kersting, N., Farina, D., Dremstrup, K.: Detection and classification of movement-related cortical potentials associated with task force and speed. Journal of Neural Engineering 10, 056015 (2013)

    Google Scholar 

  18. Xu, R., Jiang, N., Lin, C., Mrachacz-Kersting, N., Dremstrup, K., Farina, D.: Enhanced Low-latency Detection of Motor Intention from EEG for Closed-loop Brain-Computer Interface Applications. IEEE Transactions on Biomedical Engineering PP, 1 (2013)

    Google Scholar 

  19. Ahmadian, P., Sanei, S., Ascari, L., Gonzalez-Villanueva, L., Umilta, M.A.: Constrained Blind Source Extraction of Readiness Potentials From EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21, 567–575 (2013)

    Article  Google Scholar 

  20. Boye, A.T., Kristiansen, U.Q., Billinger, M., Nascimento, O.F.D., Farina, D.: Identification of movement-related cortical potentials with optimized spatial filtering and principal component analysis. Biomedical Signal Processing and Control 3, 300–304 (2008)

    Article  Google Scholar 

  21. Ibáñez, J., Serrano, J., del Castillo, M., Gallego, J., Rocon, E.: Online detector of movement intention based on EEG—Application in tremor patients. Biomedical Signal Processing and Control 8, 822–829 (2013)

    Article  Google Scholar 

  22. Bai, O., Lin, P., Vorbach, S., Li, J., Furlani, S., Hallett, M.: Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG. Clinical Neurophysiology 118, 2637–2655 (2007)

    Article  Google Scholar 

  23. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25, 41–56 (2008)

    Article  Google Scholar 

  24. Niazi, I.K., Jiang, N., Jochumsen, M., Nielsen, J.F., Dremstrup, K., Farina, D.: Detection of movement-related cortical potentials based on subject-independent training. Med. Biol. Eng. Comput., 1–6 (2013)

    Google Scholar 

  25. Kristensen, S.R., Niazi, I.K., Jochumsen, M., Jiang, N., Farina, D., Mrachacz-Kersting, N.: Changes in corticospinal excitability following the use of a BCI based protocol combined with sham visual feedback. In: Converging Clinical and Engineering Research on Neurorehabilitation. Springer, pp. 599–602. Springer (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads Jochumsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jochumsen, M. et al. (2014). Detection of Movement Intentions through a Single Channel of Electroencephalography. In: Jensen, W., Andersen, O., Akay, M. (eds) Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation. Biosystems & Biorobotics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-08072-7_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08072-7_69

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08071-0

  • Online ISBN: 978-3-319-08072-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics