Skip to main content

Manufacturing of Natural Fibre-Reinforced Polymer Composites by Solvent Casting Method

  • Chapter
Manufacturing of Natural Fibre Reinforced Polymer Composites

Abstract

Globally increasing environmental concern of petroleum-based material leads to finding the alternative renewable natural sources. Natural fibre-based composite is gaining immense interest not only because of its positive environmental impact but also its economic advantages. One of the very first and simplest processing techniques that have been used for preparing natural fibre-reinforced polymer composites is solvent casting method. In practice, the major advantage of solvent casting is its ease of fabrication without the need of specialized equipment. There are several factors that may influence solvent casting method and hence, the performance of the overall polymer composites. The present chapter provides a comprehensive overview on the manufacturing of natural fibre-reinforced polymer composites by solvent casting method. It comprises information on the factors that influence the method and the properties of the natural fibre-reinforced polymer composites prepared by this method as well as the possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DMA:

Dynamic mechanical analysis

DMF:

N, N-dimethylformamide

DSC:

Differential scanning calorimetry

HDS:

Hexadecyltrimethoxy-silanes

MEK:

Methyl ethyl ketone

MIBK:

Methyl isobutyl ketone

MPS:

γ-Methacryloxypropyltrimethoxy

MRPS:

γ-Mercaptoproyltrimethoxy

PCL:

Poly(ε-caprolactone)

PEG:

Polyethylene glycol

PHBV:

Polyhydroxybutyrate-co-valerate

PLA:

Poly(lactic acid)

PMMA:

Poly(methyl methacrylate)

Poly(S-co-BuA):

Poly(styrene-co-butyl acrylate)

PVA:

Poly(vinyl alcohol)

PVAc:

Polyvinyl acetate

SEM:

Scanning electron microscope

T g :

Glass-transition temperature

THF:

Tetrahydrofuran

TMA:

Thermomechanical analysis

WPU:

Waterborne polyurethane

References

  • Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639. doi:10.1016/j.compscitech.2006.07.003

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626. doi:10.1021/bm0493685

    Article  PubMed  Google Scholar 

  • Cooper WJ, Krasicky PD, Rodriguez F (1986) Dissolution rates of poly(methyl methacrylate) films in mixed solvents. J Appl Polym Sci 31(1):65–73. doi:10.1002/app.1986.070310107

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaillé J-Y, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18(2):198–210. doi:10.1002/pc.10274

    Article  CAS  Google Scholar 

  • Edwards RL, Coles G, Sharpe WN Jr (2004) Comparison of tensile and bulge tests for thin-film silicon nitride. Exp Mech 44(1):49–54. doi:10.1007/BF02427976

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. doi:10.1016/j.progpolymsci.2012.04.003

  • Gallo E, Schartel B, Acierno D, Cimino F, Russo P (2013) Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate. Compos Part B Eng 44(1):112–119. doi:10.1016/j.compositesb.2012.07.005

  • Gregory ER, Cheryl AM, Surya KM (2001) Processing of polymer scaffold: solvent casting. In: Anthony A, Robert PL (eds) Methods of tissue engineering. Academic Press, California, pp 681–686

    Google Scholar 

  • Grulke EA (1999) Solubility parameter values. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley-Interscience, New York

    Google Scholar 

  • Habib M, Guessasma S, Bassir D, Benseddiq N (2011) Interfacial damage in biopolymer composites reinforced using hemp fibres: finite element simulation and experimental investigation. Compos Sci Technol 71(11):1419–1426. doi:10.1016/j.compscitech.2011.05.015

  • Hansen EF, Derrick MR, Schilling MR, Garcia R (1991) The effects of solution application on some mechanical and physical properties of thermoplastic amorphous polymers used in conservation: poly(vinyl acetate)s. J Am Inst Conserv 30(2):203–213. doi:10.1179/019713691806066764

    Article  Google Scholar 

  • Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86. doi:10.1007/s11837-006-0234-2

    Article  CAS  Google Scholar 

  • Holmberg K, Jönsson B, Kronberg B, Lindman B (2003) Introduction to surfactants. In: Holmberg K, Jönsson B, Kronberg B, Lindman B (eds) Surfactants and polymers in aqueous solution, 2nd edn. Wiley, West Sussex

    Google Scholar 

  • Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42(24):2629–2645. doi:10.1177/0021998308096327

    Article  CAS  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B Eng 43(7):2883–2892. doi:10.1016/j.compositesb.2012.04.053

  • Katoh K, Shibayama M, Tanabe T, Yamauchi K (2004) Preparation and physicochemical properties of compression-molded keratin films. Biomaterials 25(12):2265–2272. doi:10.1016/j.biomaterials.2003.09.021

  • Khwaldia K, Perez C, Banon S, Desobry S, Hardy J (2004) Milk proteins for edible films and coatings. Crit Rev Food Sci Nutr 44(4):239–251. doi:10.1080/10408690490464906

    Article  CAS  PubMed  Google Scholar 

  • Le Duigou A, Baley C, Grohens Y, Davies P, Cognard J-Y, Créach’cadec R, Sohier L (2014) A multi-scale study of the interface between natural fibres and a biopolymer. Compos Part A Appl Sci Manuf 65(0):161–168. doi:10.1016/j.compositesa.2014.06.010

  • Lee S-Y, Mohan DJ, Kang I-A, Doh G-H, Lee S, Han S (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10(1):77–82. doi:10.1007/s12221-009-0077-x

    Article  CAS  Google Scholar 

  • Li Y, Mai Y-W, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60(11):2037–2055. doi:10.1016/S0266-3538(00)00101-9

  • Lieder R, Darai M, Orlygsson G, Sigurjonsson O (2013) Solution casting of chitosan membranes for in vitro evaluation of bioactivity. Biol Proc Online 15(1):11. doi:10.1186/1480-9222-15-11

  • Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ (2010) Characterisation of solution cast cellulose nanofibre – reinforced poly(lactic acid). Express Polym Lett 4(1):26–31. doi:10.3144/expresspolymlett.2010.5

  • Ly B, Thielemans W, Dufresne A, Chaussy D, Belgacem MN (2008) Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Compos Sci Technol 68(15–16):3193–3201. doi:10.1016/j.compscitech.2008.07.018

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397. doi:10.3390/polym3031377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manjkow J, Papanu JS, Hess DW, Soane DS, Bell AT (1987) Influence of processing and molecular parameters on the dissolution rate of poly‐(methyl methacrylate) thin films. J Electrochem Soc 134(8):2003–2007. doi:10.1149/1.2100807

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K (2010) Cellulose nanofiber based composites for use as ligament or tendon substitute. In: International conference on nanotechnology for the forest products industry 2010, Otaniemi, Espoo, Finland, 2010. TAPPI Press, Norcross, pp 980–982

    Google Scholar 

  • Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101(1):300–310. doi:10.1002/app.23346

    Article  CAS  Google Scholar 

  • Messiry ME (2013) Theoretical analysis of natural fiber volume fraction of reinforced composites. Alexandria Eng J 52(3):301–306. doi:10.1016/j.aej.2013.01.006

  • Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28(8):1223–1270. doi:10.1016/S0079-6700(03)00045-5

  • Mustapa IR, Shanks RA, Kong I (2013a) Melting behaviour and dynamic mechanical properties of poly(lactic acid) hemp nanosilica composites. Asian Trans Basic Appl Sci 3(2):29–37. doi:ATBAS-30320028

    Google Scholar 

  • Mustapa IR, Shanks RA, Kong I (2013b) Poly(lactic acid)-hemp-nanosilica hybrid composites: thermomechanical, thermal behavior and morphological properties. Int J Adv Sci Eng Technol 3(1):192–199

    Google Scholar 

  • Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin–microcrystalline cellulose composite films. J Appl Polym Sci 86(13):3425–3429. doi:10.1002/app.11370

    Article  CAS  Google Scholar 

  • Ouano AC, Carothers JA (1980) Dissolution dynamics of some polymers: solvent-polymer boundaries. Polym Eng Sci 20(2):160–166. doi:10.1002/pen.760200208

    Article  Google Scholar 

  • Pang C, Shanks RA, Ing K, Daver F (2013) Plasticised cellulose acetate-natural fibre composite. World J Eng 10(5):405–409. doi:10.1260/1708-5284.10.5.405

  • Papanu JS, Hess DW, Soane DS, Bell AT (1990) Swelling of poly(methyl methacrylate) thin films in low molecular weight alcohols. J Appl Polym Sci 39(4):803–823. doi:10.1002/app.1990.070390404

    Article  CAS  Google Scholar 

  • Phisalaphong M, Suwanmajo T, Sangtherapitikul P (2008) Novel nanoporous membranes from regenerated bacterial cellulose. J Appl Polym Sci 107(1):292–299. doi:10.1002/app.27118

    Article  CAS  Google Scholar 

  • Riedel U, Nickel J (2005) Applications of natural fiber composites for constructive parts in aerospace, automobiles, and other areas. In: Biopolymers online. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/3527600035.bpola001

  • Rippon JA, Evans DJ (2012) Improving the properties of natural fibres by chemical treatments. In: Kozlowski R (ed) Handbook of natural fibres: processing and applications, vol 2. Woodhead Publishing, Cambridge, UK, pp 63–140

    Chapter  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498. doi:10.1016/j.eurpolymj.2008.05.024

  • Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363. doi:10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x

    Article  CAS  Google Scholar 

  • Salehifar M, Beladi Nejad MH, Alizadeh R, Azizi MH (2013) Effect of LDPE/MWCNT films on the shelf life of Iranian Lavash bread. Pelagia Res Libr 3(6):183–18

    CAS  Google Scholar 

  • Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71(2):235–244. doi:10.1016/j.carbpol.2007.05.041

  • Shibata S, Cao Y, Fukumoto I (2005) Press forming of short natural fiber-reinforced biodegradable resin: effects of fiber volume and length on flexural properties. Polym Test 24(8):1005–1011. doi:10.1016/j.polymertesting.2005.07.012

  • Singh B, Gupta M, Tarannum H, Randhawa A (2011) Natural fiber-based composite building materials. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, Heidelberg, pp 701–720. doi:10.1007/978-3-642-17370-7_24

  • Summerscales J, Grove S (2014) Manufacturing methods for natural fibre composites. In: Hodzic A, Shanks R (eds) Natural fibre composites: materials, processes and applications. Woodhead Publishing, Cambridge, UK, pp 176–215

    Chapter  Google Scholar 

  • Tang ZG, Black RA, Curran JM, Hunt JA, Rhodes NP, Williams DF (2004) Surface properties and biocompatibility of solvent-cast poly[ε-caprolactone] films. Biomaterials 25(19):4741–4748. doi:10.1016/j.biomaterials.2003.12.003

  • Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51(12):2652–2660. doi:10.1016/j.polymer.2010.04.007

  • Ten E, Bahr DF, Li B, Jiang L, Wolcott MP (2012) Effects of cellulose nanowhiskers on mechanical, dielectric, and rheological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites. Ind Eng Chem Res 51(7):2941–2951. doi:10.1021/ie2023367

    Article  CAS  Google Scholar 

  • Ueberreiter K (1968) The solution process. In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, New York, pp 219–257

    Google Scholar 

  • Venkateshwaran N, Elayaperumal A, Sathiya GK (2012) Prediction of tensile properties of hybrid-natural fiber composites. Compos Part B Eng 43(2):793–796. doi:10.1016/j.compositesb.2011.08.023

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264. doi:10.1016/S0266-3538(03)00096-4

  • Yamauchi K, Yamauchi A, Kusunoki T, Kohda A, Konishi Y (1996) Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res 31(4):439–444. doi:10.1002/(SICI)1097-4636(199608)31:4<439::AID-JBM1>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, I., Tshai, K.Y., Hoque, M.E. (2015). Manufacturing of Natural Fibre-Reinforced Polymer Composites by Solvent Casting Method. In: Salit, M., Jawaid, M., Yusoff, N., Hoque, M. (eds) Manufacturing of Natural Fibre Reinforced Polymer Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-07944-8_16

Download citation

Publish with us

Policies and ethics