Skip to main content

Agricultural Biomass Raw Materials: The Current State and Future Potentialities

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

Nowadays, the depletion of natural resources, growing population and raising environmental concerns have raised a tremendous interest in finding a sustainable alternative for creating new materials that are environmental friendly. Agricultural biomass is the plant residue left in the plantation field after harvesting. This lignocellulosic material possesses a composition, structure and properties that make them suitable to be used in various conventional and modern applications. This renewable plant waste is abundant, biodegradable, low cost and low density that could be a principal source for production of fibres, chemicals and other industrial products. The uses of these materials are not only limited to composite, paper and textile applications, but are also progressing immensely to many other unlimited applications such as medical, nano technology, biofuel and pharmaceutical. These expanding applications of agricultural biomass would not only help in reducing the environmental pollution but also provide an opportunity in developing renewable and sustainable material to be used in various advanced applications in the future. This would also help in generating employment and contributing to the improvement of people’s livelihood. The aim of this chapter is to discuss different types of agricultural biomasses with its present applications and future potentialities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Khalil HPS, Rozman HD (2004) Gentian dan komposit lignoselulosik. Penerbit USM, Malaysia

    Google Scholar 

  • Abdul Khalil HPS, Rozman HD (eds) (2010) Sains Gentian. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Abdul Khalil HPS, Siti Alwani M, Mohd Omar AK (2006) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. Bioresources 1(2):220–232

    Google Scholar 

  • Abdul Khalil HPS, Siti Alwani M, Mohd Omar AK (2007) Cell wall structure of various tropical plant waste fibers. J Korean Wood Sci Technol 35(2):9–15

    Google Scholar 

  • Abdul Khalil HPS, Siti Alwani M, Ridzuan R, Kamarudin H, Khairul A (2008) Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibres. Polymer Plast Technol Eng 47:273–280

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Yusra A, Bhat A, Jawaid M (2010) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fibre. Ind Crop Prod 31(1):113–121

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Bhat A, Ireana Yusra A (2012a) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Jawaid M, Hassan A, Paridah MT, Zaidon A (2012b) Oil palm biomass fibres and recent advancement in oil palm biomass fibres based hybrid biocomposites (Chapter 9). In: Hu N (ed) Composites and their applications. InTech. pp 188–220

    Google Scholar 

  • Ahmad EEM (2011) The influence of micro-and nano-sisal fibres on the morphology and properties of different polymers. University of the Free (Qwaqwa Campus), Phuthaditjhaba

    Google Scholar 

  • Alix S, Philippe E, Bessadok A, Lebrun L, Morvan C, Marais S (2009) Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresour Technol 100(20):4742–4749

    Article  CAS  PubMed  Google Scholar 

  • Amirul Hakim MQ (2014) Masjid Kristal Kuala Terengganu. http://qulamirulhakim.blogspot.com/2011/01/masjid-kristal-kuala-terengganu.html Cited 29 April 2014

  • André A (2006) Fibres for strengthening of timber structures. Civil and Environmental Engineering/Structural Engineering, Luleå Tekniska Universitet, Luleå

    Google Scholar 

  • Arib R, Sapuan S, Ahmad M, Paridah M, Zaman H (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27(5):391–396

    Article  CAS  Google Scholar 

  • Baincardin (2014) Iron mosque Putrajaya. http://www.baincardin.com/2009/12/iron-mosque-putrajaya.html Cited 11 March 2014

  • Bhat AH, Abdul Khalil HPS, Bhat IUH, Banthia AK (2011) Development and characterization of novel modified red mud nanocomposites based on poly(hydroxy ether) of bisphenol A. J Appl Polym Sci 119:515–522

    Article  CAS  Google Scholar 

  • Bovea MD, Vidal R (2004) Increasing product value by integrating environmental impact, cost and customer valuation. Resour Conservat Recycl 41:12

    Article  Google Scholar 

  • Cahaya purnama (2014) Madu lebah anda telah dimanupulasi demi keuntungan. http://cahayapurnama.com/madu-lebah-anda-telah-dimanipulasi-untuk-keuntungan/ Cited 2 May 2014

  • Chinga-Carrasco G (2011a) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6:417

    Article  PubMed Central  PubMed  Google Scholar 

  • Chinga-Carrasco G (2011b) Microscopy and computerised image analysis of cellulose fibres multiscale structures. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education, Microscopy book series. Formatex Research Center, Badajoz, pp 2182–2189

    Google Scholar 

  • Cicala G, Cristaldi G, Recca G, Latteri A (2010) Composites based on natural fibre fabrics: woven fabric engineering. In: Dubrovski PD (ed) woven fabric engineering. InTech. ISBN: 978-953-307-194-7

    Google Scholar 

  • Cooper K (2014) Banana stems. http://distantdrumlin.wordpress.com/2013/11/26/banana-stems/ Cited 28 April 2014

    Google Scholar 

  • Cristaldi G, Latteri A, Recca G, Cicala G (2010) Composites based on natural fibre fabrics Woven Fabric Engineering. InTech

    Google Scholar 

  • Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol 101(13):4834–4841

    Article  CAS  PubMed  Google Scholar 

  • Gorshkova T, Brutch N, Chabbert B, Deyholos M, Hayashi T, Lev-Yadun S, Mellerowicz EJ, Morvan C, Neutelings G, Pilate G (2012) Plant fibre formation: state of the art, recent and expected progress, and open questions. Crit Rev Plant Sci 31(3):201–228

    Article  CAS  Google Scholar 

  • Guimarães J, Frollini E, Da Silva C, Wypych F, Satyanarayana K (2009) Characterization of banana, sugarcane bagasse and sponge gourd fibres of Brazil. Ind Crops Prod 30(3):407–415

    Article  Google Scholar 

  • Han JS, Rowell JS (1997) Chemical composition of fibers. In: Rowell RM, Rowell J (eds) Paper and composites from agro-based resources. CRC, Boca Raton, FL

    Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  PubMed  Google Scholar 

  • Jawaid M, Abdul Khalil H (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr Polym 86(1):1–18

    Article  CAS  Google Scholar 

  • Jawaid M, Abdul Khalil HPS, Alattas OS (2012) Woven hybrid biocomposites: dynamic mechanical and thermal properties. Compos Part A Appl Sci Manuf 43(2):288–293

    Article  CAS  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fibre‐reinforced composites. Polym Compos 29(2):187–207

    Article  CAS  Google Scholar 

  • John MJ, Thomas SS (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Article  CAS  Google Scholar 

  • Joseph K, Tolêdo Filho RD, James B, Thomas S, Carvalho L (1999) A review on sisal fiber reinforced polymer composites. Revista Brasileira de Engenharia Agrícola e Ambiental 3(3):367–379

    Google Scholar 

  • Kalita BB, Gogoi N, Kalita S (2013) Properties of ramie and its blends. Int J Eng Res Gen Sci 1(2):1–6

    Google Scholar 

  • Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites: a mini review. Expr Polym Lett 1:546–575

    Article  CAS  Google Scholar 

  • Kar SP, Jacobson MG (2012) NTFP income contribution to household economy and related socio-economic factors: lessons from Bangladesh. For Pol Econ 14:136–142

    Article  Google Scholar 

  • Kiaei M, Samariha A, Kasmani JE (2011) Characterization of biometry and the chemical and morphological properties of fibres from bagasse, corn, sunflower, rice and rapeseed residues in Iran. Afr J Agric Res 6(16):3762–3767

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Composites B 44:120–127

    Article  CAS  Google Scholar 

  • Kramer KL (ed) (2012) Usable and sustainable (Chapter 5). In: User experience in the age of sustainability. Boston: Morgan Kaufmann, pp 151–191

    Google Scholar 

  • Kumar R, Choudhary V, Mishra S, Varma I (2008) Banana fibre-reinforced biodegradable soy protein composites. Front Chem China 3(3):243–250

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Lane JP, Fagg JL (2010) Translating three states of knowledge—discovery, invention, and innovation. Implement Sci 5:9, Accessed 10 December 2011

    Article  PubMed Central  PubMed  Google Scholar 

  • Lau K-T, Ho M-P, Au-Yeung C-T, Cheung H-Y (2010) Biocomposites: their multifunctionality. Int J Smart Nano Mater 1(1):13–27

    Article  CAS  Google Scholar 

  • Liu K, Takagi H, Osugi R, Yang Z (2012) Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural fibre composites. Compos Sci Technol 72(5):633–639

    Article  CAS  Google Scholar 

  • Lucintel (2011) Natural fiber composite market trend and forecast 2011-2016: trend, forecast and opportunity. Lucintel (Global Market Research Firm), Dallas, TX

    Google Scholar 

  • Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil HPS, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled. Mater Des 46:391–410

    Article  CAS  Google Scholar 

  • Majhi SK, Nayak SK, Mohanty S, Unnikrishnan L (2010) Mechanical and fracture behavior of banana fibre reinforced Polylactic acid biocomposites. Int J Plast Technol 14(1):57–75

    Article  CAS  Google Scholar 

  • Maloney TM (1986) Terminology and products definitions: a suggested approach to uniformity worldwide. Paper presented on 18th International Union of Forest Research Organization World Congress, Ljubljana, Yugoslavia

    Google Scholar 

  • Meshram JH, Palit P (2013) On the role of cell wall lignin in determining the fineness of jute fibre. Acta Physiol Plantarum 35(5):1565–1578

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2005) Natural fibres, biopolymers, and biocomposites. CRC, Boca Raton

    Book  Google Scholar 

  • Moon RJ, Frihart CR, Wegner TH (2006) Nanotechnology applications in the forest products industry. Forest Prod J 56:4–10

    CAS  Google Scholar 

  • Moya R, Munoz F, Julio MS, Roy SF (2013) An anatomical comparison between bunch and fruit of oil palm with pineapple leaf and three woods from plantations in Costa Rica. J Oil Palm Res 25(1):138–148

    Google Scholar 

  • Nguong C, Lee S, Sujan D (2013) A Review on Natural Fibre Reinforced Polymer Composites. International Journal of Chemical, Materials Science and Technology 1(1):33–40

    Google Scholar 

  • Omotoso MA, Ogunsile BO (2009) Fibre and chemical properties of some Nigerian grown Musa species for pulp production. Asian J Mater Sci 1(1):14–21

    Article  CAS  Google Scholar 

  • Pandey JK, Ahn S, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromolecular Materials and Engineering 295(11):975–989

    Google Scholar 

  • Pawlak JJ (2007) A sustainable economy. BioResources 3(1):1–2

    Google Scholar 

  • Pugh D (2014a) Morning spider web: Super spider web. http://www.thehomespun.com/morning-spider-webs/super-spider-web/ Cited 11 March 2014

  • Pugh D (2014b) Shimmering spider webs: Tuesday muse. http://www.frugallittlebungalow.com//?s=shimmering+spider+web Cited 11 March 2014

  • Rao K, Rao KM (2007) Extraction and tensile properties of natural fibres: Vakka, date and bamboo. Compos Struct 77(3):288–295

    Article  Google Scholar 

  • Reddy N, Yang Y (2005) Biofibres from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27

    Article  CAS  PubMed  Google Scholar 

  • Rousu P, Rousu P, Anttila J (2002) Sustainable pulp production from agricultural waste. Resour Conservat Recycl 35(1):85–103

    Article  Google Scholar 

  • Rowell RM, Han JS, Rowell JS (2000) Characterization and factors effecting fibre properties. Nat Polym Agrofibres Compos 115–134

    Google Scholar 

  • Rozman HD, Shannon-Ong SH, Azizah AB, Tay GS (2013) Preliminary study of non-woven composite: Effect of needle punching and kenaf fibre loadings on non-woven thermoplastic composites prepared from kenaf and polypropylene fibre. J Polym Environ 21:1032–1039

    Article  CAS  Google Scholar 

  • Sadegh AN, Rakhshani H, Samariha A, Nemati M, Khosravi E (2011) The influence of axial position on fiber features of cotton stems. Middle-East J Sci Res 10(4):447–449

    Google Scholar 

  • Satyanarayana KG, Guimarães JL, Wypych F (2007) Studies on lignocellulosic fibres of Brazil. Part I: Source, production, morphology, properties and applications. Compos Appl Sci Manuf 38(7):1694–1709

    Article  Google Scholar 

  • Shah DU (2013) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48(18):6083–6107

    Article  CAS  Google Scholar 

  • Shibata S, Cao Y, Fukumoto I (2008) Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos Appl Sci Manuf 39:640–646

    Article  Google Scholar 

  • Shokuhfar T, Makradi A, Titus E, Cabral G, Ahzi S, Sousa ACM (2008) Prediction of the mechanical properties of hydroxyapatite/polymethyl methacrylate/carbon nanotubes nanocomposites. J Nanosci Nanotechnol 8(8):4279–4284

    Article  CAS  PubMed  Google Scholar 

  • Smith BW, Benes Z, Luzzi DE, Fischer JE (2000) Structural anisotropy of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77(5):663–665

    Article  CAS  Google Scholar 

  • Smook GA (1992) Handbook for pulp and paper technologists, 2nd edn. Augus Wilde, Vancouver

    Google Scholar 

  • Summerscales J, Dissanayake NP, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1–Fibres as reinforcements. Compos Appl Sci Manuf 41(10):1329–1335

    Article  Google Scholar 

  • Symington MC, Banks WM, West OD, Pethrick R (2009) Tensile testing of cellulose based natural fibres for structural composite applications. J Compos Mater 43(9):1083–1108

    Article  CAS  Google Scholar 

  • Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R (2004) Fibre dimension, lignin and cellulose content of various plant materials and their suitability for paper production. Indust Crop Prod 19:245–254

    Article  CAS  Google Scholar 

  • Vincent JF (2000) A unified nomenclature for plant fibres for industrial use. Appl Compos Mater 7(5–6):269–271

    Article  CAS  Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264

    Article  CAS  Google Scholar 

  • Wang Q, Dai J, Li W, Wei Z, Jiang J (2008) The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos Sci Technol 68:1644–1648

    Article  CAS  Google Scholar 

  • Wathén R (2006) Studies on fiber strength and its effect on paper properties. Unpublished doctoral dessertations, Helsinki University of Technology, Finland

    Google Scholar 

  • Yueping W, Ge W, Haitao C, Genlin T, Zheng L, Feng XQ, XushaN G (2010) Structures of bamboo fibre for textiles. Textile research journal 80(4):334–343

    Article  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Bioref 6(4):465–482

    Article  CAS  Google Scholar 

  • Zimniewska M, Wladyka-Przybylak M, Mankowski J (2011) Cellulosic bast fibres, their structure and properties suitable for composite applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibres: bio-and nano-polymer composites. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. S. Abdul Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alwani, M.S., Khalil, H.P.S.A., Asniza, M., Suhaily, S.S., Amiranajwa, A.S.N., Jawaid, M. (2014). Agricultural Biomass Raw Materials: The Current State and Future Potentialities. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07641-6_5

Download citation

Publish with us

Policies and ethics