Skip to main content

Solvability of Geometric Integrators for Multi-body Systems

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 35))

Abstract

This chapter is concerned with the solvability of implicit time-stepping methods for simulating the dynamics of multi-body systems. The standard approach is to select a time-step based on desired level of accuracy and computational efficiency of integration. Implicit methods impose an additional but often overlooked requirement that the resulting nonlinear root-finding problem is solvable and has a unique solution. Motivated by empirically observed integrator failures when using large time-steps this work develops bounds on the chosen time-step which guarantee convergence of the root-finding problem solved with Newton’s method. Second-order geometric variational integrators are used as a basis for the numerical scheme due to their favorable numerical behavior. In addition to developing solvability conditions for systems described by local coordinates, this work initiates a similar discussion for Lie group integrators which are a favored choice for floating-base systems such as robotic vehicles or molecular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(A\ge B\) for any matrices \(A,B\in \mathbb {R}^{n\times n}\) if and only if \(x^TAx \ge x^T B x\) for all \(x\in \mathbb {R}^n\).

  2. 2.

    Any matrix (including non-symmetric) \(A\in \mathbb {R}^{n\times n}\) is positive definite if \(x^TAx > 0\) for all \(x\in \mathbb {R}^n\) such that \(x\ne 0\).

References

  1. Marsden J, West M (2001) Discrete mechanics and variational integrators. Acta Numer 10:357–514

    Article  MATH  MathSciNet  Google Scholar 

  2. Kobilarov M, Crane K, Desbrun M (2009) Lie group integrators for animation and control of vehicles. ACM Trans Graph 28(2):1–14

    Article  Google Scholar 

  3. Kharevych L, Weiwei Y, Tong E, Kanso J, Marsden P, Schroder, Desbrun M (2006) Geometric, variational integrators for computer animation. In: Eurographics/ACM SIGGRAPH symposium on computer, animation, pp 1–9

    Google Scholar 

  4. Barth E, Leimkuhler B (1993) Symplectic methods for conservative multibody systems. Fields Inst Commun 10:25–43

    MathSciNet  Google Scholar 

  5. Reich S (1996) Symplectic integrators for systems of rigid bodies. In: Integration algorithms and classical mechanics, vol 10, p 383. Fields Institute Communications, AMS.

    Google Scholar 

  6. Jay L (1996) Symplectic partitioned rungekutta methods for constrained hamiltonian systems. SIAM J Numer Anal 33(1):368–387. [Online] Available http://epubs.siam.org/doi/abs/10.1137/0733019

  7. Leyendecker S, Marsden JE, Ortiz M (2008) Variational integrators for constrained dynamical systems. Z Angew Math Mech 88(9):677–708

    Article  MATH  MathSciNet  Google Scholar 

  8. Johnson E, Murphey T (2009) Scalable variational integrators for constrained mechanical systems in generalized coordinates. IEEE Trans Robot 25(6):1249–1261

    Article  Google Scholar 

  9. Kobilarov M, Marsden JE, Sukhatme GS (2010) Geometric discretization of nonholonomic systems with symmetries. AIMS J Discrete Continuous Dyn Syst Ser S (DCDS-S) 3(1):61–84

    MATH  MathSciNet  Google Scholar 

  10. Betsch P, Hesch C, Sänger N, Uhlar S (2010) Variational integrators and energy-momentum schemes for flexible multibody dynamics. J Comput Nonlinear Dyn 5(3):031001

    Article  Google Scholar 

  11. Barth E, Leimkuhler B, Reich S (1997) A semi-explicit, variable-stepsize, time-reversible integrator for constrained dynamics. SIAM J Sci Comput

    Google Scholar 

  12. Modin K, Fritzson D, Fuhrer C, Soderlind G (2005) A new class of variable step-size methods for multibody dynamics. In: ECCOMAS thematic conference on multibody dynamics 2005

    Google Scholar 

  13. Modin K, Fü hrer C (2006) Time-step adaptivity in variational integrators with application to contact problems. ZAMM 86(10):785–794

    Article  MATH  MathSciNet  Google Scholar 

  14. Holsapple R, Iyer R, Doman D (2007) Variable step-size selection methods for implicit integration schemes for odes. Int J Numer Anal Mod 4:210–240

    MATH  MathSciNet  Google Scholar 

  15. Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration. Springer series in computational mathematics, no 31. Springer, Berlin

    Google Scholar 

  16. Park F, Bobrow J, Ploen S (1995) A lie group formulation of robot dynamics. Int J Robot Res 14(6):609–618. [Online] Available http://ijr.sagepub.com/content/14/6/609.abstract

  17. Mueller A, Maisser P (2003) A lie-group formulation of kinematics and dynamics of constrained mbs and its application to analytical mechanics. Multibody Syst Dyn 9:311–352

    Article  MATH  MathSciNet  Google Scholar 

  18. Park J, Chung W-K (2005) Geometric integration on euclidean group with application to articulated multibody systems. IEEE Trans Robot 21(5):850–863

    Article  Google Scholar 

  19. Muller A, Terze Z (2009) Differential-geometric modelling and dynamic simulation of multibody systems. J Theor Appl Mech Eng 51(6)

    Google Scholar 

  20. Lanczos C (1949) Variational principles of mechanics. University of Toronto Press, Toronto

    MATH  Google Scholar 

  21. Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Krysl P, Endres L (2005) Explicit newmark/verlet algorithm for time integration of the rotational dynamics of rigid bodies. Int J Numer Methods Eng 62(15):2154–2177

    Article  MATH  MathSciNet  Google Scholar 

  23. Bou-Rabee N, Marsden J (2009) Hamilton-pontryagin integrators on Lie groups. Found Comput Math 9:197–219

    Article  MATH  MathSciNet  Google Scholar 

  24. Celledoni E, Owren B (2003) Lie group methods for rigid body dynamics and time integration on manifolds. Comput Meth Appl Mech Eng 19(3,4):421–438

    Article  MathSciNet  Google Scholar 

  25. Marsden JE, Pekarsky S, Shkoller S (1999) Discrete euler-poincare and Lie-poisson equations. Nonlinearity 12:16471662

    Article  MathSciNet  Google Scholar 

  26. Leok M (2004) Foundations of computational geometric mechanics. PhD dissertation, California Institute of Technology

    Google Scholar 

  27. Kobilarov M, Marsden J (2011) Discrete geometric optimal control on Lie groups. IEEE Trans Robot 27(4):641–655

    Article  Google Scholar 

  28. Iserles A, Munthe-Kaas HZ, Nørsett SP, Zanna A (2000) Lie group methods. Acta Numer 9:215–365

    Article  Google Scholar 

  29. Lewis F, Dawson D, Abdallah C (2003) Robot manipulator control: theory and practice, ser. Automation and Control Engineering. Taylor & Francis, [Online] Available http://books.google.com/books?id=8002tURlPP4C

  30. Featherstone R (2008) Rigid body dynamics algorithms. Springer, Berlin

    Book  MATH  Google Scholar 

  31. Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC, Boca Raton

    MATH  Google Scholar 

  32. Deuflhard P (2004) Newton methods for nonlinear problems: affine invariance and adaptive algorithms, ser. Springer series in computational mathematics. Springer, Berlin, Heidelberg, New York, autre tirage: 2006 [Online] Available http://opac.inria.fr/record=b1101121

  33. Gragg WB, Tapia RA (1974) Optimal error bounds for the newton-kantorovich theorem. SIAM J Numer Anal 11(1):10–13. [Online] Available http://www.jstor.org/stable/2156425

  34. Jain A (2011) Robot and multibody dynamics: analysis and algorithms. Springer, Berlin

    Book  Google Scholar 

  35. Bobenko AI, Suris YB (1999) Discrete lagrangian reduction, discrete euler-poincare equations, and semidirect products. Lett Math Phys 49:79

    Article  MATH  MathSciNet  Google Scholar 

  36. de Leon M, de Diego DM, Santamaria Merino A (2004) Geometric numerical integration of nonholonomic systems and optimal control problems. Eur J Control 10:520–526

    Article  Google Scholar 

  37. Lee T, Leok M, McClamroch N (2007) Lie group variational integrators for the full body problem in orbital mechanics. Celest Mech Dyn Astron 98(2):121–144

    Article  MATH  MathSciNet  Google Scholar 

  38. Bloch AM, Hussein II, Leok M, Sanyal AK (2009) Geometric structure-preserving optimal control of a rigid body. J Dyn Control Syst 15(3):307–330

    Article  MATH  MathSciNet  Google Scholar 

  39. Leyendecker S, Ober-Blbaum S, Marsden JE, Ortiz M (2010) Discrete mechanics and optimal control for constrained systems. Optimal Control Appl Methods 31(6):505–528. [Online] Available http://dx.doi.org/10.1002/oca.912

  40. Betsch P, Leyendecker S (2006) The discrete null space method for the energy consistent integration of constrained mechanical systems. part ii: multibody dynamics. Int J Numeri Methods Eng 67(4):499–552. [Online]. Available http://dx.doi.org/10.1002/nme.1639

  41. Pfeiffer F, Glocker C (1996) Multibody dynamics with unilateral contacts. Wiley series in nonlinear science

    Google Scholar 

  42. Anitescu M (2006) Optimization-based simulation of nonsmooth rigid multibody dynamics. Math Program 105:113–143. [Online] Available http://dx.doi.org/10.1007/s10107-005-0590-7

  43. Potra FA, Anitescu M, Gavrea B, Trinkle J, A linearly implicit trapezoidal method for integrating stiff multibody dynamics with contact, joints, and friction. Int J Numer Methods Eng 66(7):1079–1124. [Online] Available http://dx.doi.org/10.1002/nme.1582

  44. Studer C (2009) Numerics of unilateral contacts and friction, modeling and numerical time integration in non-smooth dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  45. Koch MW, Leyendecker S (2011) Optimal control of multibody dynamics with contact. PAMM 11(1):51–52. [Online] Available http://dx.doi.org/10.1002/pamm.201110017

  46. Jain A, Crean C, Kuo C, Bremen HV, Myint S (2012) Minimal coordinate formulation of contact dynamics in operational space. In: Robotics: science and systems

    Google Scholar 

  47. Chakraborty N, Berard S, Akella S, Trinkle J (2013) A geometrically implicit time-stepping method for multibody systems with intermittent contact. Int J Robot Res 32, no. tbd, p. tbd

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Kobilarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kobilarov, M. (2014). Solvability of Geometric Integrators for Multi-body Systems. In: Terze, Z. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-319-07260-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07260-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07259-3

  • Online ISBN: 978-3-319-07260-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics